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Abstract

The goal of this paper is to present and calibrate a model for the joint evolution of correlated com-
modity forward curves. The main originality of the model is that it captures both the local and global
dependence structures of two forward curves, through an error-correcting term in the risk-premia of the
forward price returns. The model is applied here to the US oil and gas forward markets, which have

strong economic relations, from the demand and supply sides.
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1 Introduction

The modeling of the co-movements of commodity forward curves has so far received very little attention in

the financial literature. Yet, this is a subject of considerable importance for the pricing, risk management,
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and optimization of portfolios composed of multi-commodity assets such as gas-fired power plants, oil-
indexed natural gas contracts, or oil refineries. Indeed, the financial value of a multi-commodity asset is a
function of the entire forward curves and the hedging strategies for multi-commodity portfolios are based
on futures contracts rather than spot transactions. As a consequence, a model describing the evolution of
commodity spot prices only, provides a partial view of the risks/value entailed in such portfolios and of
the possible actions of the portfolio manager. A model describing the joint evolution of two commodity
forward curves should capture at the same time their global and local dependence structures. The local
dependence structure describes the volatilities, the marginal densities and the correlations of the daily
forward curve moves. A framework of analysis for this type of dependence was described in Clewlow
and Strickland (2000), who propose to extend the classical PCA on one commodity forward curve to a
PCA on the returns of two commodity forward curves, thus obtaining several types of co-movements of
the two forward curves. By contrast with the local dependence structure, the global dependence structure
describes the long-term relations existing between commodity prices'. Much attention has been devoted
to the study of cointegration between series of different spot/futures commodity prices?, with a view
to describing the interaction between several particular points in the same forward curve or in different
forward curves (for example the relations between the front-month prices of a pair of commodities or the
relations between the spot and front-month prices of the same commodity). There is extensive work also on
the evolution of a single interest rate or commodity forward curve, either for forecasting (see Diebold and
Li (2003)) or VaR calculation (see e.g. Brooks (2001)). But no work, to our knowledge, has ever proposed
a framework to simulate the evolution of two entire commodity forward curves, describing the way the two
curves "revert to each other”. The retained approach for this problem follows Pilipovic (1997), Manoliu
and Tompaidis (2002), Schwartz and Smith (2000), and Geman and N’Guyen (2005), who decompose

the daily deformations of a forward curve into a short-term shock, affecting only the first maturities,

'two frequent examples of long-term interactions between commodity markets are the possibility to use a given commodity
to product another one (natural gas to produce power, crude oil to produce heating oil...) or to use a given commodity as a

substitute to another one (e.g. heating oil instead of natural gas for heating, coal instead of natural gas to produce power)

%see e.g. Alexander (1999) for a study of the cointegration between gas/oil spot and futures prices on the NYMEX, Ates
and Wang (2005) for an analysis of the relations between spot and first-near by natural gas prices in the US, Siliverstovs et
al. (2005) for an analysis of cointegration between Japanese, European, and North American gas prices, Nguyen (2002) for the
analysis of the cointegration between the futures prices of metals on the London Metal Exchange, Pekka and Antti (2005) for

the study of cointegration between spot and futures electricity prices on the NordPool



and a long-term shock, consisting of an overall translation of the forward curve. Regarding the local
dependence structure, the model captures, on the one hand, the causal relations between the daily short-
term and long-term shocks of the two commodities, and on the other hand, the time-dependent volatilities
of the four comovements (see e.g. Geman and Nguyen (2005), Richter and Sorensen (2000), and Duffie
(2002), for evidence of stochasticity of the volatility of commodity prices, and Blix (2003) for evidence of
seasonality of natural gas implicit volatility), and their possibly non Gaussian dependence structure. The
approach to capture the long-term relations between two forward curves can be viewed as an extension
of the concept of cointegration to forward curves. The decomposition of the forward curve daily moves
translates into a decomposition of the shape of the forward curve into a seasonal term, slope® and level.
The long-term relationships between the two commodity forward curve slopes and levels are looked for
and the deviations to these equilibriums become predictive variables for the future relative evolution of
the two curves. The model is applied here to the US natural gas and crude oil markets during the period
January 1999-July 2005. These two markets, in spite of their differences, are intertwined by economic
relations, from the consumption side and the production side. Regarding the local dependence structure,
we find evidence of causal relations between natural gas and crude oil shocks, stochastic volatility for
the different shocks, seasonal volatility for natural gas short-term shocks only, and positive correlations
between the co-movements of oil and gas forward curves. Regarding the global dependence structure, our
analysis highlights the existence of a strong long-term relationship between the levels of natural gas and
oil (with two break points occurring in the beginning of year 2000 and in the middle of year 2003), and of
a weaker long-term relationship between gas and oil slopes. The analysis of the temporal stability of the
model parameters reveals that the correlations between the daily co-movements of oil and gas forward
curves have increased significantly throughout the period 1999-2005.

I view the contribution of this paper as twofold: from an economic standpoint, the presented forward
curve model sheds light on the relations between the natural gas and oil markets in the US, in particular
the lead and lag properties between the two energies; from a statistical standpoint, the model proposed
here opens a new avenue for the modeling of the joint evolution of several correlated forward curves,
giving a simple way to capture in a single arbitrage-free model the long-term relations between the shapes
of different forward curves and the local statistical relations between their daily co-movements.

The rest of this paper is organized as follows. In section 2, we describe the economic relations between oil

3depending on the sign of the slope, the curve will be said to be in contango or in backwardation



and natural gas markets in the US, from the demand side and the offer side. In section 3, we present the
two-factor model and describe the global and local dependence structures between oil and gas forward
prices in the US. In section 4, the model is precisely calibrated and the temporal stability of the model

parameters is studied. Section 5 contains concluding comments.

2 The economic relations between oil and natural gas in the US

Even though the natural gas market is a competitive and local market whereas the crude oil market is an
oligopolistic and global market, the natural gas and oil prices are intertwined by strong economic relations,
emanating from both the demand and supply sides. Industry represents approximately 30% and power
generation 20% of the global US gas consumption*. On the whole, the global available switching potential
represents around 5% of the natural gas consumption in the US, 30% coming from industry, the rest from
power generation. Around 4.3% of the natural gas consumption of the industrial sector is switchable:
these customers are equipped with dual-fuel capacity (essentially boilers and process heaters), allowing
them to switch from gas to oil (generally distillate or residual fuel oil) depending on the market prices
of the two energies®. As regards power generation, the fuel-switching potential represents 20% of the gas
consumption, but is expected to decline due to the progressive replacement of dual-fuel steam boilers by
gas-fired combined cycles facilities. Fuel-switching implies a dependence between oil and gas prices which
is both in the very short term (due to existing switching capacities), and in the medium-long-term (due
to technology changes following a sustained period of abnormally high natural gas or oil prices).
Because industrials or electricity producers often lock in their margins using the forward markets, we
expect positive correlations not only between oil and gas spot prices but between oil and gas forward prices
as well. This convergence between gas and oil forward markets is reinforced by the current behavior of
hedge funds and financial investors, who tend more and more to consider the different commodity markets
as a unified asset class (see Geman (2005)).

The dependence between oil and natural gas prices in the US is also originating in the supply side. In
this case, two effects play in opposite directions. On the one hand, as natural gas is a co-product of oil, a

rise in crude oil prices provokes an increase of the supply of crude oil, which in turn leads to an increased

*All data are found in American Gas Foundation (2003)

SNote that the recent environmental regulations, imposing air pollutant emission constraints or costs to industrials, tend to

prevent them from using distillate fuel or coal as substitutes to natural gas



production of natural gas, thus putting a downward pressure on natural gas prices; on the other hand,
as the Gulf of Mexico concentrates major gas and oil fields, gas processing plants, and oil refineries, the
supply of natural gas and oil distillate products in the US are both strongly dependent on the frequent
natural events striking this region: for example, when Katrina, Rita, and Wilma made landfall, they
affected at the same time the production of natural gas, Crude Oil, and refined products in the US, thus

causing a simultaneous rise in prices of the two energies.

3 Empirical observation of the dependence between oil and gas

forward curves in the US

3.1 Data description

The data used here are the NYMEX daily futures prices of natural gas and crude oil from January 1999
to the end of August 2006. For the three energies, the prices are the 1st month, 2nd month,...,15th month
futures prices. Concerning natural gas, the price is based on delivery at the Henry Hub in Louisiana. The
futures prices are expressed in dollars per Million British Thermal Units (MMBtu). For crude oil, the
NYMEX futures contracts’s delivery point is Cushing, Oklahoma, and the prices are expressed in dollars

per barrel.
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Figure 1: Price trajectories from January 1999 to August 2006

Figure (1) represents the trajectories of 1st month and 13th month futures prices for the two energies:
e the trends of natural gas and oil long term prices display a parallel direction

e even though the 1st month natural gas futures price exhibits much larger moves than oil within the

period, oil and gas approximately share the same backwardation and contango periods®”
e the period 1999-2004 can be separated into several subperiods:
— from January 1999 to end of 2001, the two trajectories display a ”bump”: they first follow an
upward trend until the end of 2000, and then a decay until the end of 2001
— in the years 2002-2003, gas prices start rising while oil prices remain stable
— from the beginning of 2004 to now on, the two energies display a very clear surge

— during the period August 20058-February 2006, the natural gas short-term and long-term prices
displayed a pronounced spike, which was observed also but to a much lesser extent on the crude

oil market

SRemark that the effect of the seasonality in the gas forward curve is filtered out here since the delivery periods of the two

observed contracts are distant from one year

"There are a few notable exceptions to this rule such as the summer 2004, when the gas forward curve was in contango and

the crude oil curve was backwardated

8¢ime of Hurricane Katrina’s landfall in the Gulf of Mexico



From now on, we will restrict our analysis of the dependencies between oil and gas to the period beginning
in January 4, 1999 and ending in July 29, 2005, based on the observation that Katrina’s landfall provoked

a temporary disconnection in the normal long-term relations between oil and gas markets.

3.2 Decomposition of daily forward curve moves into short term and long-

term shocks

3.2.1 Justification and interpretation of the decomposition

In Figure (2), it appears that forward curve moves decompose into a long-term shock, which provokes a
global upward or downward translation of the forward curve, and a short term shock, which only impacts
the short term futures prices, with an amplitude that decays with time-to-maturity. In economic terms,
the interpretation of the decomposition is the following:

e the short term shock refers to events that are expected to affect the market for a limited period of

time (temperature change, transitory supply shortage or transportation congestion...)9

e the long-term shock relates to events or news that potentially impact the long-term energy price
(news about the likelihood of a war or political instability in an oil producing country, disclosure of

lower than expected reserves...)

°0One could wonder why events of weekly time scale such as a temperature drop or a bottleneck in the transportation system
should affect the prices of the contracts delivering in the following months; this link between spot and forward markets is
explained by the storability of the three considered energies. Indeed, tensions in the day-ahead market prompt utilities and
distribution companies to pump on their reserves in order to take advantage of high spot prices or be able to deliver their firm
clients; this in turn creates a situation of scarcity in the medium term, which, as explained by the theory of storage, has a direct

impact on the slope of the monthly forward curve
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Figure 2: Decomposition of returns into a short and long term shocks

3.2.2 Mathematical formulation of the decomposition

We denote F°(t,T') the futures price at time t of a futures contract with settlement date 7" written on the

energy product e. We assume the following arbitrage-free daily evolution model for the forward curve of

energy e:
AF(t,T) ke (T—t)
) = e he(TDAXE + AYY 1
Fe(t,T) ¢ ¢t Ak (1)
AXp = ap oyt
AYE =yt o
where:
o (af¥) and (af) are (F;)-adapted processes representing the drifts

(60X and (00 are (F;)-adapted processes representing the volatilities

o (nP) and (nf"") are correlated processes formed of i.i.d variables

. ki represents the characteristic time of the short term shock



3.2.3 Calculation of the short term and long-term shocks

Assuming that the short term shock does not affect the 14th month return'®, the short term and long-term

shocks can be readily derived from the observed short term and long-term returns of energy e:

AFe(t,TM))
AYS = _— 2
¢ ( Fe(t7T14) obs ( )
_n [(AFe(t,T1)  AF¢(t,T14)
AXE — eke(Tl t) < ’ _ ’
t Fe(t,Ty) Fet,Tia) ),

where the variable T; denotes the last trading day of the i-th month futures contract observed at date t.

3.2.4 Estimation of the short term characteristic time for the three energies

To estimate k. for the two energies, we minimize the root mean squared errors (RMSE) i.e., the root of

the mean squared differences between the observed returns and the model implied returns

AF°(t,T)) [ AFe(t,Tvy) nnomy (AF(T)  AF(t,Ti)
= Bl e - (3)
Fe(TH) ) ,on Fe(t, Tia) )y, Fe(t,T)  Fe(t,Tu) ),

Therefore, we solve, for each energy e, the following programme:

N 14 AF t. 1 2
. ] épe(t,lz) e() l) 4
M MSE - ' N R N
ke ZnR S X 4 tz_—lizzl |:< } e(taji) >obs ( } e(t71i) model ( )

where N is the number of observations.

crude oil natural gas

ke 2.60 3.30
é (in months) 4.61 3.64
% (in %) 141 5.56

Table 1: k. and unexplained variances for the two energies; RM SE (resp. RMSR) stands for the root mean squared

errors (resp. returns)

Table (1) reports the short term characteristic times of the three energies. As a first observation, these
characteristic times are compatible with the assumption 3 x kL < 14 months, which helped us calculate

the short term and long-term shocks. In addition, we observe that the short term characteristic time of

natural gas is significantly smaller than the one of crude oil. The economic interpretation is that the short

10T his is equivalent to the assumption 3 x é < 14 months



term shocks in the natural gas local market are linked to very short-lived events (e.g., sudden drop of
temperature in the US, bottleneck in the gas transportation system etc...) whereas the short term shocks
in the global crude oil market correspond to events with a longer time scale (e.g. disclosure of a lower
than expected world inventory).

In addition, Table (1) reveals that the performance of the model in explaining the variance of the
observed returns is significantly lower for natural gas (with an unexplained variance of 5.56%) than for
oil (with an unexplained variance of 1.41%). A plausible explanation is that the relative importance of
”twist” moves (which are not accounted for in the two factor model) in the global forward curve volatility
is more pronounced for natural gas than for oil. This is confirmed by a Principal Component Analysis on

the 14 series of forward curve returns, whose results are displayed in table (2):

crude oil natural gas

1st factor  96.64% 93.21%

2nd factor  2.91% 4.69%

3rd factor  0.33% 1.18%

Table 2: Proportion of overall variance explained by the 1st (translation), 2nd (rotation), and 3rd factors (twists) for

the two energies

3.3 Slope and level: two state variables for the shape of the forward curve

The evolution model (1) implies a forward curve shape model. Indeed, if we neglect the second-order

terms:
AFe(t,T)

= e~k (TDAX] + AYY
Fe(t,T) ¢ et

AlnFe(t,T) =~

and we obtain the following expression for the shape of the forward curve at date t:
t t
InF(t,T) = InF°(0,T)+» e *TIAX:+Y Ay (5)

s=0 s=0

Let us assume that the shape of the initial forward curve is of the type:

InFe(0,T) = Q(T) + e *TX¢ + V¢ (6)

10



where T takes integer values representing months and @ is a function of period one year and zero mean.

Then, equation (5) leads to:

InFe(t,T) = Q(T)+e FT=DXe vy (7)
with:
t
Xf = Xoe *h 43 ek UmIAXE (8)
s=1
t
YO = Yo+ ) AYY 9)
s=1

Equation (7) shows that, under model (1), the shape of the forward curve at any date ¢ is the superposition
of a seasonal function Q(T'), a slope X, and a level Y;. The slope and level can be derived from the daily
shocks (AXf, AY,®) via (8)-(9). The slope follows a mean-reverting process driven by the short term

shocks and the level a random walk driven by the long-term shocks:

X; = X7 e FB L AXT (10)

Vi = Yia+AYY (11)

The forward curve model (7) has very classical economic interpretations: the seasonality of the forward
curve is explained by a structural imbalance between winter and summer consumptions and by the small
number of market participants having access to storage reservoirs; the level is related to the long-term
price of the commodity and the slope to the benefit (classically referred to as the ”convenience yield”)
of holding the physical commodity vs holding a contract for future delivery. Fama and French (1988) in
particular use the slope of the forward curve as a proxy for the inventory level.

The level at any date is computed using formula (11), the level at the first date being initialized at 0'!.
The slope is estimated by ”inversion” of formula (7) using the observed 1st month and 13th month log
futures prices at date ¢:

X¢ = b M= n(F,(t, 1))/ Fu(t,Ty3))

From now on, we will refer to the relations between slopes and levels as the global dependence structure

and to the correlation and causal relations between daily shocks as the local dependence structure.

the level reflects the gains of an investor holding a constant sum of $1 in the 15-th month futures contract and rolling over

his position at each last trading day

11
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Figure 3: Slopes and levels of the two energies

3.4 Analysis of global dependence structure

3.4.1 Stationarity properties of the slopes and levels

Table (3) reports the results of the Phillips-Perron unit root tests on the slopes and levels of the two
energies. Not surprisingly, the hypothesis of a unit root can be rejected for the slopes but not for the

levels.

12



Dickey-Fuller Lag Parameter p-value

Crude oil slope

PP —3.833 8 0.017

ADF —3.552 11 0.037

Natural gas slope

PP —-3.713 8 0.023

ADF -3.319 11 0.0674

Crude oil level

PP —0.704 8 0.970

ADF —0.57 11 0.979

Natural gas level

PP —1.835 8 0.648

ADF —1.674 11 0.717

Table 3: Phillips-Perron (PP) and Augmented-Dickey-Fuller (ADF) unit-root tests on the slopes and levels of the

two energies; the test-statistics, truncation lag parameters, and p-values of the tests are reported

3.4.2 Long-term relation between forward curve slopes and levels

Figure (4(a)) displays the relation between natural gas and crude oil slopes. We see that, when the natural
gas forward curve is in backwardation (positive slope), the oil forward curve is also in backwardation!2.
However, a backwardated oil curve does not necessarily imply a backwardated natural gas forward curve.
In particular, year 2002 experienced a backwardated oil curve and a natural gas forward curve in contango.
The results of the linear regression of natural gas slope on crude oil slope are reported on table (4). Note

that the regression coefficients is very close to 1, the regression R? being around 30%.

2note however that there are outliers in the linear relation: for instance, during the winters 2000-2001 and 2002-2003, the

natural gas slope was very high while the oil slope was mildly positive

13



Estimate Std. Error t value Pr(> |t])

borude  —0.113  0.00594  —19.12 < 2.10716 ok
Qerude 0.906 0.0365 24.80 < 2_10*16 %ok
R? = 27.25%

Table 4: Linear regression of natural gas slope on crude oil slope: a denotes the regression coefficient and b the
intercept; the estimated coefficients, standard deviations, t-statistics, and two-sides p-values are reported; *** indicates

significance at the 0.1% level, ** at the 1% level, * at the 5% level, and - at the 10% level
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Figure 4: Left: natural gas slope in terms of crude oil slope; the linear fit is displayed in dotted lines; Right: natural
gas level in terms of crude oil level; the linear fit is displayed in dotted lines and the best three-lines fit is displayed in
bold lines; in both graphs, the sequence of colors red, yellow, green, blue, purple, red marks the passage of time from

January 1999 to July 2005
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Figure (4(b)) displays the relation between natural gas and crude oil levels: a piecewise-linear relation
appears, with two break points occurring at the beginning of year 2000, where gas long-term futures prices
surge'?, and in the middle of year 2003'*, where oil long-term futures prices start rising sharply.

Tables (5) and (6) report the results of the classical linear regression and the piecewise-linear regression
of gas level on crude oil level. First, we see that the R? is much higher than for the regression on the
slopes: the long-term equilibrium between the levels is much stronger than the long-term relation between
the slopes. Second, the piecewise-linear regression coefficients are significant, which confirms the validity
of the piecewise linear model, and of the same negative sign, causing the gas long-term price to be less
sensitive to the variations of oil long-term price above the up-threshold Y and below the down-threshold
Y. Lastly, Table (7) shows that the unit-root hypothesis Hy can be rejected by the Phillips-Perron test
but not by the Augmented-Dickey-Fuller test for the residuals of the piecewise linear relation between
gas and oil levels; in addition, Hy cannot be rejected by either test for the residuals of the linear relation
between gas and oil levels. As a conclusion, only the piecewise linear relation allows one to obtain the

desired stationary residuals.

Estimate Std. Error t value Pr(> |t])

berude —0.0548  0.00714  —7.672  2.897M Kk
Qerude  0.972 0.00654  148.568 < 2.10716 ok
R? = 93.09%

Table 5: Linear regression of natural gas level on crude oil level: a denotes the regression coefficient and b the
intercept; estimated coefficients, standard deviations, t-statistics, and two-sided p-values are reported; *** indicates

significance at the 0.1% level, ** at the 1% level, * at the 5% level, and - at the 10% level

13Several events triggered this run-up: the oil price rise, setting a higher backstop price for natural gas, the lack of drilling
activity in the previous years due to low gas prices, the hot weather in the Southwest and reduced hydroelectric generation,

and lastly the resumed growth of gas consumption in the industrial sector

"“During this period, corresponding to the invasion of Iraq, the oil market spare capacity declined due to the loss of production

capacity in Iraq and Venezuela and to the growing international demand

15



Estimate Std. Error t value Pr(> |t])

berude  —0.586 0.0139 —42.28 < 210716
Gerude 1627 0.0160 101.72 <2.10°16
Uoryge  —0-982 0.0222 —44.29 <9210 16
Oryge  —1.250 0.0387 —32.32 <2.10°16

Y orude = 0474 Yopuge = 1.0668  R2 = 96.86%

k%

*okk

*okk

*okk

Table 6: Piecewise-linear regression of natural gas level on crude oil level; the regression variables are Y, (Y. —Y,)” =
Min(0;Y,—Y,), and (Y, —Y,)" = Maz(0;Y, —Y,), with e=crude oil; a denotes the different regression coefficients and
b the intercepts; the thresholds Y, and Y, are determined by the minimization over the couples (Y,,Y:) of the sum of
squared residuals of the regression of Y, on the variables Y¢, (Y, —Y,) ", and (Y, — Y.)™; the estimated coefficients,

standard deviations, t-statistics, and two-sided p-values are reported; *** indicates significance at the 0.1% level, **

at the 1% level, * at the 5% level, and - at the 10% level

Piecewise linear relation

Dickey-Fuller
PP —3.831

ADF —2.902

Lag Parameter p-value

8 0.0174

11 0.197

Linear relation

Dickey-Fuller
PP —2.031

ADF —1.586

Lag Parameter p-value

8 0.565

11 0.753

Table 7: Phillips-Perron and Augmented-Dickey-Fuller unit root tests on the residuals of the piecewise linear (up)

and linear (down) relations between gas and oil levels; the test-statistics, truncation lag parameters, and p-values of

the test are reported

16



4 A new dependence model for pairs of commodity forward

curves

4.1 Formulation of the model

We want to introduce an error-correction mechanism on the levels and on the slopes between the energies
e and e'. Therefore, we postulate that the drifts are the sums of a constant part, a term expressing

dependence on past returns (with a maximal lag of one day'®, and an error-correction term:

AXE [1X .o AXE ) 6 c
, , Xiy o
AXY KX el AXYE _, €’
= +T +1I X |t (12)
AYf By AYE, &
, , RY
AYY Ky el AYS, €’

RY =¥¢ = £ (V)
In the model (12):
e ¢ stands for natural gas and e’ stands for crude oil
o 1= (X, X,e’ LY es by,e) 18 the 1 X 4 vector composed of the constant part of the drifts
e ['is a 4 x 4 matrix expressing dependence on past returns
e X/ and Y}® denote the slope and level of the forward curve of the energy e

e — f;}’e’ (z) is the relation between the levels of energy e and e’ (in the case of gas and oil, fy is

piecewise linear function)
e (R}) is the process composed of the deviations to the long-term relation between the levels

e IT is a 4 x 3 matrix expressing sensitivity to the slopes and deviations to the long-term relation

between the levels

e [x (resp. ly) refers to the lags between the observed slopes (resp. level deviations) and the correc-
tions mechanisms
b'¢ X,e, X,e X, X' X Y, Yie, Yie Ve Y Ve .
e the processes (€;°° = a; “n; ‘.6, =0, m 6 =0,°n. % ¢ = 0,n ) follow inde-

pendent GARCH processes; we include a seasonal component in the GARCH process followed by

natural short-term shocks

5The inspection of the cross-correlation functions between the different shocks reveals that the shocks are not dependent on

past shocks over a lag of one day
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X,e

o the residual shocks (1;5¢, ¢ nY¢ nY¢') are assumed to be i.i.d

We use the 4 x 1 vector process AZ; = (AXg, AXf',AYE, AYy") and the 3 x 1 state vector process
& = (XfﬁlX,XleX,Rily)l. A few comments are required here. First, keeping in mind equations (10)
and (11), assuming linear function fy, and making abstraction of the dependence between (X¢, X¢') and
(Y, Y induced by the terms TAZ,_; and II&, the model (12) implies a vector autoregressive model
(VAR) for the slopes and a vector error-correction model (VECM) for the levels, which makes sense from
an economic standpoint. Second, we believe that the model (12) is sufficiently general to account for the
evolution of any pair of related commodity forward curves, with an appropriate long-term relation ff/el.

e Xe X,
y Ot

b X' Ye Y Y
However, as we choose to model the processes (o; *“n; Pl “n % 0 ¢

n o ¢ oy nf’el) as independent
GARCH processes, we exclude from our scope the relations slope/volatility (which are studied by Ates and
Wang (2005) in the US gas market) and the effect of volatility transmission between the two commodity
prices, an effect which was highlighted before in the literature in the case of gas and oil markets (see
Pindyck (2004) and Ewing et al. (2003)). Lastly, we assume a constant dependence structure between
the residuals (1;"°, ntX’el R ntY’e’), thus neglecting the possible correlation clustering (see Eydeland and

Wolyniec (2003)) and the potential relations between correlation and volatilities (see e.g. Goorbergh et

al. (2005)).

4.2 Calibration of the model

To calibrate the model, we proceed in three steps: first, we find the lags [x and ly and we estimate o
and I by a linear regression of AZ; on AZ; 1 and &; second, we apply independent GARCH models to
the residuals of this linear regression; third, we study the dependence structure between the standardized
residuals of the independent GARCH models. This decomposed procedure, which is also adopted by Ng
and Pirrong (1994) and Ates and Wang (2005), was motivated by the high number of parameters to be

estimated.

4.2.1 Estimation of /x, Iy, I' and II

Figure (5) represent the cross-correlations between the gas shocks and the state variables &. We therefore
choose Ix = 4 and ly = 6. Tables (8)-(9) report the results of the four linear regressions. Regarding

the cross-energy dependence on past shocks, we find that the causality generally runs from oil to natural
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gas and is negative!®. Regarding the inter-temporal dependence on past shocks, the causality runs both
ways between the short-term and the long-term, is positive (resp. negative) in the direction long-term —
short-term for oil (resp. gas) and negative in the direction short-term < long-term for both energies!”.
Regarding the auto-correlation of shocks, we find that in the short-term, oil and gas markets tend to
amplify the previous move, whereas in the long-term, they are more likely to correct it.

The most important results concern the reaction of the shocks to the state variables (&;). As regards the
impact of the slopes, we find that crude oil short-term shocks tend to correct the spread between gas
and oil slopes and that gas long term shocks react positively to a positive spread between gas and oil
slopes, thus having an amplification effect on the spread between the two curves. Concerning the impact
of the levels, we find that the gas short-term shocks react negatively to an overvalued natural gas long
term price'®, whereas the gas long-term shocks correct the deviations to the long-term equilibrium on the
levels; note that the crude oil long-term shocks are not sensitive to the different state variables (& ). We
conclude that gas (resp. crude oil) plays the leading role in the slope (resp. long term price) discovery.
The low value of the R? in the four regressions shows that the forecasting power of the model is however

relatively low as concerns daily shocks.

“Remember the previous remark on the negative causality originating from the supply side made in section 2
YThis substitution effect between short and long term shocks has a stabilizing impact on the futures prices

8therefore there is a feedback effect balancing the previous amplification effect
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Figure 5: Cross correlation functions between the gas shocks and the state variables & with lags of 1 to 10 days; the
cross correlation functions with lag i (resp. —i) represent the correlation between the state variables at time ¢ and the

shocks at time ¢ + 4 (resp. t — i)

20



Estimate  Std. Error t value Pr(> |t|)

X, gas —0.000250  0.000737  —0.339 0.735
| 0.106 0.0284 3.728  0.000200 oAk
T2 —0.208 0.0515 —4.044  0.0000549 oAk
I3 —0.198 0.0565 —3.495  0.000486 oAk
II; 3 —0.0304 0.00803  —3.786  0.000159 otk
R? =2.82%
Wald test for gas
DF F Pr(> F)
3 0.969 0.407
Estimate  Std. Error t value Pr(> |t|)
X crude 0.00167 0.000623 2.668 0.00771 *
Iy 0.0237 0.0139 1.700 0.0893
Ia9 0.104 0.0267 3.891  0.000104 oAk
Ta3 —0.0824 0.0280 —2.943  0.00330 ok
L4 0.143 0.0275 5.195  2.31.1077 koxk
Iy 4 0.00431 0.00233 1.847 0.0649
Iy —0.0114 0.00406 —2.814  0.00494 *x
R? = 4.34%

Wald test for crude

DF F Pr(> F)

1 2.12 0.146

Table 8: Linear regression of the natural gas (resp. crude oil) short-term shocks on (AZ;_1)12,3 and (&)s (resp.
(AZi—1)1,2,3,4 and (&)1,2); the estimated coefficients, standard deviations, t-statistics, and two-sided p-values are
reported; *** indicates significance at the 0.1% level, ** at the 1% level, * at the 5% level, and - at the 10% level; the

Wald test for gas (resp. crude) tests the null hypothesis that I'y 4 =11y ; =II; » =0 (resp. IIz 3 = 0)
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Estimate Std. Error t value Pr(> |t])

1Y gas 0.00229  0.000679  3.372  0.000765 ok
31 —0.0500  0.0127  —3.939 0.0000855 ok
[0 —0.0525  0.0259  —2.028  0.0427 *
13,1 0.0116  0.00286  4.060  0.0000513 ok
M52 —0.00892  0.00450  —1.983  0.0475 *
I35 —0.0243  0.00480  —5.063 4.59.107 HoHk
R? =2.712%

Wald test for gas

DF F Pr(> F)

2 1.083 0.339

Estimate Std. Error t value Pr(> |t|)

14 crude 0.00150  0.000360  4.180  0.0000307 ok

Ly2 —0.105  0.0265  —3.977 0.0000729 Hork

W —0.0907  0.0266  —3.411 0.000664 Hoxk
R? = 2.58%

Wald test for crude

DF F Pr(> F)

5 0.148 0.981

Table 9: Linear regression of the natural gas (resp. crude) long-term shocks on (AZ;_1)1 2 and (&) (vesp. (AZ;—1)2.4
); the estimated coefficients, standard deviations, t-statistics, and two-sided p-values are reported; *** indicates
significance at the 0.1% level, ** at the 1% level, * at the 5% level, and - at the 10% level; the Wald test for gas (resp.

crude) tests the null hypothesis that F373 = F374 = O (resp. F471 = F473 = H471 = H472 = H473 = O)
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4.2.2 GARCH models for the volatilities

For the two energies, the volatilities of the short-term and long-term shocks are estimated by the standard
deviation of the shocks within a 50-days sliding window. The obtained trajectories are displayed on figure
(6): all shocks exhibit volatility clusters, jumps, and the natural gas short-term volatility follow a seasonal
pattern, with high values in the winter (60 % in normal winters) and lower values in the summer (20 %
on average). The phenomenon of stochastic volatility, observed in most commodity markets, is linked to
the temporal variations of some key indicators of the supply flexibility, such as the deviation to "normal”
storage level, and the proportion of spare production/refining capacity. Note also that the short-term
volatility peaks correspond to periods of high positive forward curve slopes, an observation which is
consistent with the theory of storage (Kaldor (1939)), and which was also made by Ates and Wang (2005)
in the US gas market. The seasonal pattern of natural gas short-term volatility can be explained by the
fact that the demand is more sensitive to the temperature during the heating season and that the demand
and production shocks have more impact on the prices during the winter, when storage is part of the
supply curve and the market is tight, than during the summer, when storage is part of the demand curve
and the market is loose. The seasonal behavior of gas implicit volatilities was already observed by Blix

(2003) in the US gas market.
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Figure 6: Annualized short-term and long-term volatilities (in %) of the two energies estimated with a 50-days sliding

window

In this section, we model the volatility processes of the residuals of the four previous regressions (i.e.

the processes (¢;) in model (12)). Box-Pierce tests on the processes (¢7) show the heteroscedasticity of

the different residuals:

data X? df  p-value
(69%%)2  19.424 1 1.047.10°°
(e/9°%)2 17276 1 3.233.10°°

(-T2 9619 1 0.00193

(elcrudey2 96,693 1 2.385.1077

X.gas)2

Table 10: Box-Pierce tests on the processes (e; (67 97%)2 (e cmude)2

, T, (@2, and ()2 the

test-statistics, degrees of freedom of the approximate chi-square distribution of the test statistics, and p-values of the

tests are reported

Moreover, figure (6) exhibits a significant seasonal component in the natural gas short-term volatility.

The following seasonal GARCH model, proposed by Diebold (2003) for the modeling of temperature
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series, accounts for this phenomenon:

€& = Ot
oiy = ai€; +bio} + (ap + Acos(2mt/252) + Bsin(2mt/252)) (13)

Note that the volatility of volatility is itself seasonal since the volatility shocks € = o7n7 have different
average winter and summer values. This characteristic is compatible with the observation of gas short-
term volatility, which mostly cluster during the winters (see figure (6)). This model was calibrated by
Quasi-Maximum Likelihood on natural gas short-term residuals (e;****). The log-likelihood of the model
in the case of Gaussian residuals (n;) is:
N
LL=— ; (% + log(at)> - glog(%r)

The calibration of model (13) (available on request) reveals that the coefficient A is not significant. The

estimation of the model imposing A = 0 is provided in Table (11). Table (12) reports the results of the

Estimate Std. Error t value Pr(> |t|)
ax 0.155 0.0108 14.377 < 2.10716 ek
by 0.752 0.0367 20528 < 210716 ek
ag  0.0000884 0.0000228 3.883 0.000103  ***

B —0.0000491 0.0000152 —3.234  0.00122 ok

Table 11: Quasi-Maximum-Likelihood estimation of a seasonal GARCH model on (e} **); the estimated coefficients,

standard deviations, t-statistics, and two-sided p-values are reported

Jarque-Bera (resp. Box-Pierce) tests on the residuals (resp. squared residuals) of the seasonal GARCH
model. The Jarque-Bera tests allow us to reject the hypothesis of Gaussian residuals. By contrast, we
cannot reject the hypothesis of independence for the squared residuals, which is an indication of the validity
of the model. Figure (7) plots the trajectories of (e;?**)2 together with the variance (0¢)2 predicted by

the seasonal GARCH models and the long-term seasonal variance functions ag + Bsin(27t/252).
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Jarque-Bera

data X? df  p-value

9% 2354.378 2 2.2.10716

Box-Pierce

data X? df  p-value

(n;9%%)2 0.0069 1  0.934

Table 12: Jarque-Bera and Box-Pierce tests on the residuals of the seasonal GARCH model for natural gas; the test

statistics, degrees of freedom, and p-values of the tests are reported

We model the other series by classical GARCH models, whose implementation is not reported here.
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4.2.3 Dependence structure of the standardized co-movements

We model the dependence structure of the residuals (1) using the copula representation:
P < z21,m ¢ <z € <zl < 2a) = C(F (1), X (2), F(23), FY° (24)) (14)

where the copula function C' is defined in [0; 1]* with values in [0; 1], and (FX>, FXoe' FYe Fy’el) denote

X,e X, Ye Y,e')
b) ) b)

the marginal distributions of the residuals (7 . We will use here the Gaussian copula

n nmoesn

defined by:

Cur, uz, uz, ug) = Bp(B7" (ur), 7" (u2), 87" (us), 87" (ua)) (15)

where <I>§ is a 4-variate normal distribution of correlation matrix p, and ®~! is the inverse of the univariate
standard normal distribution. As explained in Joe and Xu (1996), the calibration of the model (14) is
done in two steps:

- we first fit the marginal densities (f70¢, fX¢ | fY¢, fY2¢") of the different shocks using the Skewed Gen-
eralized Error Distribution (SGED); the obtained parameters and goodness-of-fit results, which are not
reported here, indicate the relevance of this representation

- once the marginal distributions are determined, the correlation matrix p is estimated by computing the
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empirical Kendall’s 7% for each pair, which is linked to the correlation matrix of the Gaussian copula
through the relation 7 = 2 arcsin(p) (see Lindskog et al. (2003))
The estimates of matrix correlations p for the pair gas/crude oil are reported on tables (13). We note

that all correlations are significantly positive.

short-term gas short-term crude long-term gas long-term crude

short-term gas 1 0.282 0.623 0.294
short-term crude 0.282 1 0.300 0.470

long-term gas 0.623 0.300 1 0.380
long-term crude 0.294 0.470 0.380 1

Table 13: Estimation of the correlation matrix of the Gaussian copula

4.3 Evolution of the correction mechanisms

Table (14) reports the separate estimations of matrix IT on the periods January 1999-December 2001,
January 2002-December 2003 and January 2004-July 2005, and compares them with the global estimator
on the whole period January 1999-July 2005: we observe first that the signs of the coefficients II; 3 and
II3 3, expressing the correction of the deviations to the long-term relation between gas and oil levels,
have been stable throughout the period under study; conversely, the pairs (Il 1,15 2) and (II3 1,115 2),
expressing the sensitivity to the gas and oil slopes have had a different behavior on the most recent period,

the former switching signs, and the latter becoming non-significant.

Ythe empirical Kendall's 7 expressing dependance between two samples (X;) and (Y;) is computed by 7(X,Y) =

0_1% 21919‘231\] sign(Xi, — Xi,)(Yi, — Xi,)
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Global Jan 1999-Dec 2001 Jan 2002-Dec 2003 Jan 2004-Jul 2005

II;3 —0.0304 —0.0264 —0.0351 —0.0835
*okok Hok 0.103 .
I 0.00431 0.00657 0.0103 —0.00921
I, —0.0112 —0.0167 —0.0319 0.00648
*k Hok *k 0.325
I3, 0.0116 0.0150 0.0127 0.00113
Fkk Kk . 0.871
I35, —0.00892 —0.00948 —0.0203 0.00436
* 0.157 . 0.571
II33 —0.0243 —0.0241 —0.0303 —0.0611
k% Kk * *

Table 14: Estimation of the error-correction parameters on the three periods; *** indicates significance at the 0.1%
level, ** at the 1% level, * at the 5% level, and - at the 10% level; p-values above 10% are reported below the estimated

parameters

4.4 Evolution of the correlations

The objective here is to study the stability of the dependence structure which was found between the
forward curves co-movements. Figure (8) represents the temporal evolution of the correlation between gas
and oil short-term (resp. long-term) shocks derived from Kendall’s 72° (with a one-year sliding window).
Both correlations display an upward trend on the period. Possible explanations for this observation are
the correlation induced by the growing investment of hedge funds in the commodity asset class and the
fact that, in commodity markets, in contrast to equity markets, correlation is generally bigger when
prices are rising. To account for this trend in the dependence structure, we have estimated (following
Rockinger and Jondeau (2001)) a bi-variate normal copula model with a quadratic trend in the correlation
coefficient?! for the two pairs gas short-term shocks/oil short-term shocks and gas long-term shocks/oil

long-term shocks:

Cilur,uz) = @) (27" (ur), @' (u2)) (16)

pt = a-+ bt (17)

where <I>i is the bivariate normal distribution with correlation coefficient p, and a, b are unknown pa-

rameters describing the temporal evolution of the correlation coefficient. The log-likelihood of the copula

1 =2 arcsin(p)

21The term expressing linear dependence with respect to time is not included here in the model as it was not found significant
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model (16)-(17) is:
N N
LL(p, F*, F¥) = 3 I [e(F* (), F¥ ()] + 3 (in 7)) + tn [ £ 0] ) (18)
t=1 t=1
n (18), (f¢,f¢) are the univariate densities, (F¢, F¢') are the univariate cumulative distributions,

(nf)i1<t<n are the observations for energy e, and ¢; is the density of the bi-variate normal copula of

correlation coefficient p; = a + bt?:

92CY
BulauQ
Gp (P71 (), D" (u2))
P(@~1 (u1)) (7 (u2))

Ct(ul,uz) =

where ¢,(z,y) = %\;ﬁ exp <— . \/11_7 [2% +y? — 2pa:y]> is the bi-variate normal density for correla-

tion coefficient p, and ¢ is the density of the N(0,1) distribution. The parameters a and b maximizing the
term Ef;l In [ct(Fe(nf), F¢ (nf’))] in (18) are reported on Table (15) and the obtained quadratic trend

plotted in Figure (8).
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gas/crude short-term shocks

Estimate  Std. Error t value Pr(> |t])
a 0.176 0.0337 5.29 1.25.1077  kxx

b 1.12.10°7  2.64.10°8 4.25 2.16.1075  Hkx*

gas/crude long-term shocks

Estimate  Std. Error t value Pr(> |t|)
a 0.235 0.0321 733 2.34.10713 ek

b 1.379.1077  2.19.107%  6.30  3.06.107'0 ***

Table 15: Maximum-likelihood estimation of the quadratic trend in the correlation between oil and gas

5 Conclusion

This paper has presented a new dependence model for commodity forward curves. Like popular models on
single commodity forward curves, it decomposes the forward curve moves into a short-term and a long-term
shocks, with stochastic and possibly seasonal volatilities. The correlation between the shocks of the two
curves is captured through a non-Gaussian dependence structure. The originality of the model is that, in
addition to this local dependence structure, it accounts for the long-term relations between the commodity
forward prices through an error-correction term in the risk-premia of the forward price returns. The long-
term relations are based on the state variables describing the shape of a forward curve under the two-factor
model, namely the slope and level. Our current research concerns the modeling of stochastic dependence
structure, and the implications of the model for multi-commodity asset pricing, risk measurement, and
portfolio optimization. As far as asset pricing is concerned, Duan and Pliska (2004) have shown that the
combination of cointegration and stochastic volatility has an impact on asset prices: thus the model would
lead to different pricing results than standard local dependence models without risk-premia. Regarding
risk management, the model, because it captures the long-term relations between two curves, allows one
to realistically simulate portfolios’ Earning-at-Risk on a long-term perspective. With respect to portfolio
optimization, our error-correction model allows the portfolio manager to forecast the relative evolutions
of the two considered forward curves given their initial slopes and levels, a property which has numerous

implications; hedge funds will be provided with directional strategies based on long/short positions on
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the two curves while physical portfolio managers will have a way to choose the best moments to lock in

the margin of their assets with futures contracts.
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