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and optimization of portfolios omposed of multi-ommodity assets suh as gas-�red power plants, oil-indexed natural gas ontrats, or oil re�neries. Indeed, the �nanial value of a multi-ommodity asset is afuntion of the entire forward urves and the hedging strategies for multi-ommodity portfolios are basedon futures ontrats rather than spot transations. As a onsequene, a model desribing the evolution ofommodity spot pries only, provides a partial view of the risks/value entailed in suh portfolios and ofthe possible ations of the portfolio manager. A model desribing the joint evolution of two ommodityforward urves should apture at the same time their global and loal dependene strutures. The loaldependene struture desribes the volatilities, the marginal densities and the orrelations of the dailyforward urve moves. A framework of analysis for this type of dependene was desribed in Clewlowand Strikland (2000), who propose to extend the lassial PCA on one ommodity forward urve to aPCA on the returns of two ommodity forward urves, thus obtaining several types of o-movements ofthe two forward urves. By ontrast with the loal dependene struture, the global dependene struturedesribes the long-term relations existing between ommodity pries1. Muh attention has been devotedto the study of ointegration between series of di�erent spot/futures ommodity pries2, with a viewto desribing the interation between several partiular points in the same forward urve or in di�erentforward urves (for example the relations between the front-month pries of a pair of ommodities or therelations between the spot and front-month pries of the same ommodity). There is extensive work also onthe evolution of a single interest rate or ommodity forward urve, either for foreasting (see Diebold andLi (2003)) or VaR alulation (see e.g. Brooks (2001)). But no work, to our knowledge, has ever proposeda framework to simulate the evolution of two entire ommodity forward urves, desribing the way the twourves "revert to eah other". The retained approah for this problem follows Pilipovi (1997), Manoliuand Tompaidis (2002), Shwartz and Smith (2000), and Geman and N'Guyen (2005), who deomposethe daily deformations of a forward urve into a short-term shok, a�eting only the �rst maturities,1two frequent examples of long-term interations between ommodity markets are the possibility to use a given ommodityto produt another one (natural gas to produe power, rude oil to produe heating oil...) or to use a given ommodity as asubstitute to another one (e.g. heating oil instead of natural gas for heating, oal instead of natural gas to produe power)2see e.g. Alexander (1999) for a study of the ointegration between gas/oil spot and futures pries on the NYMEX, Atesand Wang (2005) for an analysis of the relations between spot and �rst-near by natural gas pries in the US, Siliverstovs etal. (2005) for an analysis of ointegration between Japanese, European, and North Amerian gas pries, Nguyen (2002) for theanalysis of the ointegration between the futures pries of metals on the London Metal Exhange, Pekka and Antti (2005) forthe study of ointegration between spot and futures eletriity pries on the NordPool2



and a long-term shok, onsisting of an overall translation of the forward urve. Regarding the loaldependene struture, the model aptures, on the one hand, the ausal relations between the daily short-term and long-term shoks of the two ommodities, and on the other hand, the time-dependent volatilitiesof the four omovements (see e.g. Geman and Nguyen (2005), Rihter and Sorensen (2000), and DuÆe(2002), for evidene of stohastiity of the volatility of ommodity pries, and Blix (2003) for evidene ofseasonality of natural gas impliit volatility), and their possibly non Gaussian dependene struture. Theapproah to apture the long-term relations between two forward urves an be viewed as an extensionof the onept of ointegration to forward urves. The deomposition of the forward urve daily movestranslates into a deomposition of the shape of the forward urve into a seasonal term, slope3 and level.The long-term relationships between the two ommodity forward urve slopes and levels are looked forand the deviations to these equilibriums beome preditive variables for the future relative evolution ofthe two urves. The model is applied here to the US natural gas and rude oil markets during the periodJanuary 1999-July 2005. These two markets, in spite of their di�erenes, are intertwined by eonomirelations, from the onsumption side and the prodution side. Regarding the loal dependene struture,we �nd evidene of ausal relations between natural gas and rude oil shoks, stohasti volatility forthe di�erent shoks, seasonal volatility for natural gas short-term shoks only, and positive orrelationsbetween the o-movements of oil and gas forward urves. Regarding the global dependene struture, ouranalysis highlights the existene of a strong long-term relationship between the levels of natural gas andoil (with two break points ourring in the beginning of year 2000 and in the middle of year 2003), and ofa weaker long-term relationship between gas and oil slopes. The analysis of the temporal stability of themodel parameters reveals that the orrelations between the daily o-movements of oil and gas forwardurves have inreased signi�antly throughout the period 1999-2005.I view the ontribution of this paper as twofold: from an eonomi standpoint, the presented forwardurve model sheds light on the relations between the natural gas and oil markets in the US, in partiularthe lead and lag properties between the two energies; from a statistial standpoint, the model proposedhere opens a new avenue for the modeling of the joint evolution of several orrelated forward urves,giving a simple way to apture in a single arbitrage-free model the long-term relations between the shapesof di�erent forward urves and the loal statistial relations between their daily o-movements.The rest of this paper is organized as follows. In setion 2, we desribe the eonomi relations between oil3depending on the sign of the slope, the urve will be said to be in ontango or in bakwardation3



and natural gas markets in the US, from the demand side and the o�er side. In setion 3, we present thetwo-fator model and desribe the global and loal dependene strutures between oil and gas forwardpries in the US. In setion 4, the model is preisely alibrated and the temporal stability of the modelparameters is studied. Setion 5 ontains onluding omments.2 The eonomi relations between oil and natural gas in the USEven though the natural gas market is a ompetitive and loal market whereas the rude oil market is anoligopolisti and global market, the natural gas and oil pries are intertwined by strong eonomi relations,emanating from both the demand and supply sides. Industry represents approximately 30% and powergeneration 20% of the global US gas onsumption4. On the whole, the global available swithing potentialrepresents around 5% of the natural gas onsumption in the US, 30% oming from industry, the rest frompower generation. Around 4.3% of the natural gas onsumption of the industrial setor is swithable:these ustomers are equipped with dual-fuel apaity (essentially boilers and proess heaters), allowingthem to swith from gas to oil (generally distillate or residual fuel oil) depending on the market priesof the two energies5. As regards power generation, the fuel-swithing potential represents 20% of the gasonsumption, but is expeted to deline due to the progressive replaement of dual-fuel steam boilers bygas-�red ombined yles failities. Fuel-swithing implies a dependene between oil and gas pries whihis both in the very short term (due to existing swithing apaities), and in the medium-long-term (dueto tehnology hanges following a sustained period of abnormally high natural gas or oil pries).Beause industrials or eletriity produers often lok in their margins using the forward markets, weexpet positive orrelations not only between oil and gas spot pries but between oil and gas forward priesas well. This onvergene between gas and oil forward markets is reinfored by the urrent behavior ofhedge funds and �nanial investors, who tend more and more to onsider the di�erent ommodity marketsas a uni�ed asset lass (see Geman (2005)).The dependene between oil and natural gas pries in the US is also originating in the supply side. Inthis ase, two e�ets play in opposite diretions. On the one hand, as natural gas is a o-produt of oil, arise in rude oil pries provokes an inrease of the supply of rude oil, whih in turn leads to an inreased4All data are found in Amerian Gas Foundation (2003)5Note that the reent environmental regulations, imposing air pollutant emission onstraints or osts to industrials, tend toprevent them from using distillate fuel or oal as substitutes to natural gas4



prodution of natural gas, thus putting a downward pressure on natural gas pries; on the other hand,as the Gulf of Mexio onentrates major gas and oil �elds, gas proessing plants, and oil re�neries, thesupply of natural gas and oil distillate produts in the US are both strongly dependent on the frequentnatural events striking this region: for example, when Katrina, Rita, and Wilma made landfall, theya�eted at the same time the prodution of natural gas, Crude Oil, and re�ned produts in the US, thusausing a simultaneous rise in pries of the two energies.3 Empirial observation of the dependene between oil and gasforward urves in the US3.1 Data desriptionThe data used here are the NYMEX daily futures pries of natural gas and rude oil from January 1999to the end of August 2006. For the three energies, the pries are the 1st month, 2nd month,...,15th monthfutures pries. Conerning natural gas, the prie is based on delivery at the Henry Hub in Louisiana. Thefutures pries are expressed in dollars per Million British Thermal Units (MMBtu). For rude oil, theNYMEX futures ontrats's delivery point is Cushing, Oklahoma, and the pries are expressed in dollarsper barrel.
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(a) rude oil futures pries in dollars/Barrel (b) natural gas futures pries in dollars/MMBtuFigure 1: Prie trajetories from January 1999 to August 2006Figure (1) represents the trajetories of 1st month and 13th month futures pries for the two energies:� the trends of natural gas and oil long term pries display a parallel diretion� even though the 1st month natural gas futures prie exhibits muh larger moves than oil within theperiod, oil and gas approximately share the same bakwardation and ontango periods67� the period 1999-2004 an be separated into several subperiods:{ from January 1999 to end of 2001, the two trajetories display a "bump": they �rst follow anupward trend until the end of 2000, and then a deay until the end of 2001{ in the years 2002-2003, gas pries start rising while oil pries remain stable{ from the beginning of 2004 to now on, the two energies display a very lear surge{ during the period August 20058-February 2006, the natural gas short-term and long-term priesdisplayed a pronouned spike, whih was observed also but to a muh lesser extent on the rudeoil market6Remark that the e�et of the seasonality in the gas forward urve is �ltered out here sine the delivery periods of the twoobserved ontrats are distant from one year7There are a few notable exeptions to this rule suh as the summer 2004, when the gas forward urve was in ontango andthe rude oil urve was bakwardated8time of Hurriane Katrina's landfall in the Gulf of Mexio6



From now on, we will restrit our analysis of the dependenies between oil and gas to the period beginningin January 4, 1999 and ending in July 29, 2005, based on the observation that Katrina's landfall provokeda temporary disonnetion in the normal long-term relations between oil and gas markets.3.2 Deomposition of daily forward urve moves into short term and long-term shoks3.2.1 Justi�ation and interpretation of the deompositionIn Figure (2), it appears that forward urve moves deompose into a long-term shok, whih provokes aglobal upward or downward translation of the forward urve, and a short term shok, whih only impatsthe short term futures pries, with an amplitude that deays with time-to-maturity. In eonomi terms,the interpretation of the deomposition is the following:� the short term shok refers to events that are expeted to a�et the market for a limited period oftime (temperature hange, transitory supply shortage or transportation ongestion...)9� the long-term shok relates to events or news that potentially impat the long-term energy prie(news about the likelihood of a war or politial instability in an oil produing ountry, dislosure oflower than expeted reserves...)

9One ould wonder why events of weekly time sale suh as a temperature drop or a bottlenek in the transportation systemshould a�et the pries of the ontrats delivering in the following months; this link between spot and forward markets isexplained by the storability of the three onsidered energies. Indeed, tensions in the day-ahead market prompt utilities anddistribution ompanies to pump on their reserves in order to take advantage of high spot pries or be able to deliver their �rmlients; this in turn reates a situation of sarity in the medium term, whih, as explained by the theory of storage, has a diretimpat on the slope of the monthly forward urve 7



(a) natural gas futures pries (in $/MMBtu) as a fun-tion of time to maturity (in months) from January, 4thto January 19th, 1999 (b) Natural gas futures pries returns as a funtion oftime to maturity (in months) from January 5th to May27th, 1999Figure 2: Deomposition of returns into a short and long term shoks3.2.2 Mathematial formulation of the deompositionWe denote F e(t; T ) the futures prie at time t of a futures ontrat with settlement date T written on theenergy produt e. We assume the following arbitrage-free daily evolution model for the forward urve ofenergy e: �F e(t; T )F e(t; T ) = e�ke(T�t)�Xet +�Y et (1)�Xet = �e;Xt + �e;Xt �e;Xt�Y et = �e;Yt + �e;Yt �e;Ytwhere:� (�e;Xt ) and (�e;Yt ) are (Ft)-adapted proesses representing the drifts� (�e;Xt ) and (�e;Yt ) are (Ft)-adapted proesses representing the volatilities� (�e;Xt ) and (�e;Yt ) are orrelated proesses formed of i.i.d variables� 1ke represents the harateristi time of the short term shok
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3.2.3 Calulation of the short term and long-term shoksAssuming that the short term shok does not a�et the 14th month return10, the short term and long-termshoks an be readily derived from the observed short term and long-term returns of energy e:�Y et = ��F e(t; T14)F e(t; T14) �obs (2)�Xet = eke(T1�t)��F e(t; T1)F e(t; T1) � �F e(t; T14)F e(t; T14) �obswhere the variable Ti denotes the last trading day of the i-th month futures ontrat observed at date t.3.2.4 Estimation of the short term harateristi time for the three energiesTo estimate ke for the two energies, we minimize the root mean squared errors (RMSE) i.e., the root ofthe mean squared di�erenes between the observed returns and the model implied returns��F e(t; Ti)F e(t; Ti) �model = ��F e(t; T14)F e(t; T14) �obs + e�ke(Ti�T1)��F e(t; T1)F e(t; T1) � �F e(t; T14)F e(t; T14) �obs (3)Therefore, we solve, for eah energy e, the following programme:Mke inRMSE =vuut 1N � 14 NXt=1 14Xi=1 ���F e(t; Ti)F e(t; Ti) �obs ���F e(t; Ti)F e(t; Ti) �model�2 (4)where N is the number of observations. rude oil natural gaske 2:60 3:301ke (in months) 4:61 3:64(RMSE)2(RMSR)2 (in %) 1:41 5:56Table 1: ke and unexplained varianes for the two energies; RMSE (resp. RMSR) stands for the root mean squarederrors (resp. returns)Table (1) reports the short term harateristi times of the three energies. As a �rst observation, theseharateristi times are ompatible with the assumption 3 � 1ke < 14 months, whih helped us alulatethe short term and long-term shoks. In addition, we observe that the short term harateristi time ofnatural gas is signi�antly smaller than the one of rude oil. The eonomi interpretation is that the short10This is equivalent to the assumption 3� 1ke < 14 months 9



term shoks in the natural gas loal market are linked to very short-lived events (e.g., sudden drop oftemperature in the US, bottlenek in the gas transportation system et...) whereas the short term shoksin the global rude oil market orrespond to events with a longer time sale (e.g. dislosure of a lowerthan expeted world inventory).In addition, Table (1) reveals that the performane of the model in explaining the variane of theobserved returns is signi�antly lower for natural gas (with an unexplained variane of 5:56%) than foroil (with an unexplained variane of 1:41%). A plausible explanation is that the relative importane of"twist" moves (whih are not aounted for in the two fator model) in the global forward urve volatilityis more pronouned for natural gas than for oil. This is on�rmed by a Prinipal Component Analysis onthe 14 series of forward urve returns, whose results are displayed in table (2):rude oil natural gas1st fator 96:64% 93:21%2nd fator 2:91% 4:69%3rd fator 0:33% 1:18%Table 2: Proportion of overall variane explained by the 1st (translation), 2nd (rotation), and 3rd fators (twists) forthe two energies3.3 Slope and level: two state variables for the shape of the forward urveThe evolution model (1) implies a forward urve shape model. Indeed, if we neglet the seond-orderterms: �lnF e(t; T ) � �F e(t; T )F e(t; T ) = e�ke(T�t)�Xet +�Y etand we obtain the following expression for the shape of the forward urve at date t:lnF e(t; T ) = lnF e(0; T ) + tXs=0 e�ke(T�s)�Xes + tXs=0�Y es (5)Let us assume that the shape of the initial forward urve is of the type:lnF e(0; T ) = Q(T ) + e�keT �Xe0 + Y e0 (6)
10



where T takes integer values representing months and Q is a funtion of period one year and zero mean.Then, equation (5) leads to: lnF e(t; T ) = Q(T ) + e�ke(T�t) �Xet + Y et (7)with: �Xet = �X0e�ket + tXs=1 e�ke(t�s)�Xes (8)Y et = Y0 + tXs=1�Y es (9)Equation (7) shows that, under model (1), the shape of the forward urve at any date t is the superpositionof a seasonal funtion Q(T ), a slope �Xt, and a level Yt. The slope and level an be derived from the dailyshoks (�Xet ;�Y et ) via (8)-(9). The slope follows a mean-reverting proess driven by the short termshoks and the level a random walk driven by the long-term shoks:�Xet = �Xet��te�ke�t +�Xet (10)Y et = Y et��t +�Y et (11)The forward urve model (7) has very lassial eonomi interpretations: the seasonality of the forwardurve is explained by a strutural imbalane between winter and summer onsumptions and by the smallnumber of market partiipants having aess to storage reservoirs; the level is related to the long-termprie of the ommodity and the slope to the bene�t (lassially referred to as the "onveniene yield")of holding the physial ommodity vs holding a ontrat for future delivery. Fama and Frenh (1988) inpartiular use the slope of the forward urve as a proxy for the inventory level.The level at any date is omputed using formula (11), the level at the �rst date being initialized at 011.The slope is estimated by "inversion" of formula (7) using the observed 1st month and 13th month logfutures pries at date t: �Xet = eke(T1�t)ln(Fe(t; T1)=Fe(t; T13))From now on, we will refer to the relations between slopes and levels as the global dependene strutureand to the orrelation and ausal relations between daily shoks as the loal dependene struture.11the level reets the gains of an investor holding a onstant sum of $1 in the 15-th month futures ontrat and rolling overhis position at eah last trading day 11



(a) Slopes (b) LevelsFigure 3: Slopes and levels of the two energies3.4 Analysis of global dependene struture3.4.1 Stationarity properties of the slopes and levelsTable (3) reports the results of the Phillips-Perron unit root tests on the slopes and levels of the twoenergies. Not surprisingly, the hypothesis of a unit root an be rejeted for the slopes but not for thelevels.
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Dikey-Fuller Lag Parameter p-valueCrude oil slopePP �3:833 8 0:017ADF �3:552 11 0:037Natural gas slopePP �3:713 8 0:023ADF �3:319 11 0:0674Crude oil levelPP �0:704 8 0:970ADF �0:57 11 0:979Natural gas levelPP �1:835 8 0:648ADF �1:674 11 0:717Table 3: Phillips-Perron (PP) and Augmented-Dikey-Fuller (ADF) unit-root tests on the slopes and levels of thetwo energies; the test-statistis, trunation lag parameters, and p-values of the tests are reported3.4.2 Long-term relation between forward urve slopes and levelsFigure (4(a)) displays the relation between natural gas and rude oil slopes. We see that, when the naturalgas forward urve is in bakwardation (positive slope), the oil forward urve is also in bakwardation12.However, a bakwardated oil urve does not neessarily imply a bakwardated natural gas forward urve.In partiular, year 2002 experiened a bakwardated oil urve and a natural gas forward urve in ontango.The results of the linear regression of natural gas slope on rude oil slope are reported on table (4). Notethat the regression oeÆients is very lose to 1, the regression R2 being around 30%.
12note however that there are outliers in the linear relation: for instane, during the winters 2000-2001 and 2002-2003, thenatural gas slope was very high while the oil slope was mildly positive13



Estimate Std. Error t value Pr(> jtj)brude �0:113 0:00594 �19:12 < 2:10�16 ***arude 0:906 0:0365 24:80 < 2:10�16 ***R2 = 27:25%Table 4: Linear regression of natural gas slope on rude oil slope: a denotes the regression oeÆient and b theinterept; the estimated oeÆients, standard deviations, t-statistis, and two-sides p-values are reported; *** indiatessigni�ane at the 0.1% level, ** at the 1% level, * at the 5% level, and : at the 10% level

(a) natural gas slope in terms of rude oil slope (b) natural gas level in terms of rude oil levelFigure 4: Left: natural gas slope in terms of rude oil slope; the linear �t is displayed in dotted lines; Right: naturalgas level in terms of rude oil level; the linear �t is displayed in dotted lines and the best three-lines �t is displayed inbold lines; in both graphs, the sequene of olors red, yellow, green, blue, purple, red marks the passage of time fromJanuary 1999 to July 2005
14



Figure (4(b)) displays the relation between natural gas and rude oil levels: a pieewise-linear relationappears, with two break points ourring at the beginning of year 2000, where gas long-term futures priessurge13, and in the middle of year 200314, where oil long-term futures pries start rising sharply.Tables (5) and (6) report the results of the lassial linear regression and the pieewise-linear regressionof gas level on rude oil level. First, we see that the R2 is muh higher than for the regression on theslopes: the long-term equilibrium between the levels is muh stronger than the long-term relation betweenthe slopes. Seond, the pieewise-linear regression oeÆients are signi�ant, whih on�rms the validityof the pieewise linear model, and of the same negative sign, ausing the gas long-term prie to be lesssensitive to the variations of oil long-term prie above the up-threshold �Y and below the down-thresholdY. Lastly, Table (7) shows that the unit-root hypothesis H0 an be rejeted by the Phillips-Perron testbut not by the Augmented-Dikey-Fuller test for the residuals of the pieewise linear relation betweengas and oil levels; in addition, H0 annot be rejeted by either test for the residuals of the linear relationbetween gas and oil levels. As a onlusion, only the pieewise linear relation allows one to obtain thedesired stationary residuals.Estimate Std. Error t value Pr(> jtj)brude �0:0548 0:00714 �7:672 2:89�14 ***arude 0:972 0:00654 148:568 < 2:10�16 ***R2 = 93:09%Table 5: Linear regression of natural gas level on rude oil level: a denotes the regression oeÆient and b theinterept; estimated oeÆients, standard deviations, t-statistis, and two-sided p-values are reported; *** indiatessigni�ane at the 0.1% level, ** at the 1% level, * at the 5% level, and : at the 10% level
13Several events triggered this run-up: the oil prie rise, setting a higher bakstop prie for natural gas, the lak of drillingativity in the previous years due to low gas pries, the hot weather in the Southwest and redued hydroeletri generation,and lastly the resumed growth of gas onsumption in the industrial setor14During this period, orresponding to the invasion of Iraq, the oil market spare apaity delined due to the loss of produtionapaity in Iraq and Venezuela and to the growing international demand15



Estimate Std. Error t value Pr(> jtj)brude �0:586 0:0139 �42:28 < 2:10�16 ***arude 1:627 0:0160 101:72 < 2:10�16 ***a�rude �0:982 0:0222 �44:29 < 2:10�16 ***a+rude �1:250 0:0387 �32:32 < 2:10�16 ***Yrude = 0:474 �Yrude = 1:0668 R2 = 96:86%Table 6: Pieewise-linear regression of natural gas level on rude oil level; the regression variables are Ye, (Ye�Ye)� =Min(0;Ye�Ye), and (Ye� �Ye)+ =Max(0;Ye� �Ye), with e=rude oil; a denotes the di�erent regression oeÆients andb the interepts; the thresholds Ye and �Ye are determined by the minimization over the ouples (Ye; �Ye) of the sum ofsquared residuals of the regression of Ygas on the variables Ye, (Ye �Ye)�, and (Ye � �Ye)+; the estimated oeÆients,standard deviations, t-statistis, and two-sided p-values are reported; *** indiates signi�ane at the 0.1% level, **at the 1% level, * at the 5% level, and : at the 10% level
Pieewise linear relation Dikey-Fuller Lag Parameter p-valuePP �3:831 8 0:0174ADF �2:902 11 0:197Linear relation Dikey-Fuller Lag Parameter p-valuePP �2:031 8 0:565ADF �1:586 11 0:753Table 7: Phillips-Perron and Augmented-Dikey-Fuller unit root tests on the residuals of the pieewise linear (up)and linear (down) relations between gas and oil levels; the test-statistis, trunation lag parameters, and p-values ofthe test are reported 16



4 A new dependene model for pairs of ommodity forwardurves4.1 Formulation of the modelWe want to introdue an error-orretion mehanism on the levels and on the slopes between the energiese and e0. Therefore, we postulate that the drifts are the sums of a onstant part, a term expressingdependene on past returns (with a maximal lag of one day15, and an error-orretion term:0BBBBBBBBBB�
�Xet�Xe0t�Y et�Y e0t

1CCCCCCCCCCA = 0BBBBBBBBBB�
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RYt = Y et � fe;e0Y (Y e0t )In the model (12):� e stands for natural gas and e0 stands for rude oil� � = (�X;e; �X;e0 ; �Y;e; �Y;e0) is the 1� 4 vetor omposed of the onstant part of the drifts� � is a 4� 4 matrix expressing dependene on past returns� �Xet and Y et denote the slope and level of the forward urve of the energy e� x ! fe;e0Y (x) is the relation between the levels of energy e and e0 (in the ase of gas and oil, fY ispieewise linear funtion)� (RYt ) is the proess omposed of the deviations to the long-term relation between the levels� � is a 4 � 3 matrix expressing sensitivity to the slopes and deviations to the long-term relationbetween the levels� lX (resp. lY ) refers to the lags between the observed slopes (resp. level deviations) and the orre-tions mehanisms� the proesses (�X;et = �X;et �X;et ; �X;e0t = �X;e0t �X;e0t ; �Y;et = �Y;et �Y;et ; �Y;e0t = �Y;e0t �Y;e0t ) follow inde-pendent GARCH proesses ; we inlude a seasonal omponent in the GARCH proess followed bynatural short-term shoks15The inspetion of the ross-orrelation funtions between the di�erent shoks reveals that the shoks are not dependent onpast shoks over a lag of one day 17



� the residual shoks (�X;et ; �X;e0t ; �Y;et ; �Y;e0t ) are assumed to be i.i.dWe use the 4 � 1 vetor proess �Zt = (�Xet ;�Xet 0;�Y et ;�Y et 0)0 and the 3 � 1 state vetor proess�t = � �Xet�lX ; �Xe0t�lX ; RYt�lY �0. A few omments are required here. First, keeping in mind equations (10)and (11), assuming linear funtion fY , and making abstration of the dependene between ( �Xet ; �Xe0t ) and(Y et ; Y e0t ) indued by the terms ��Zt�1 and ��t, the model (12) implies a vetor autoregressive model(VAR) for the slopes and a vetor error-orretion model (VECM) for the levels, whih makes sense froman eonomi standpoint. Seond, we believe that the model (12) is suÆiently general to aount for theevolution of any pair of related ommodity forward urves, with an appropriate long-term relation fe;e0Y .However, as we hoose to model the proesses (�X;et �X;et ; �X;e0t �X;e0t ; �Y;et �Y;et ; �Y;e0t �Y;e0t ) as independentGARCH proesses, we exlude from our sope the relations slope/volatility (whih are studied by Ates andWang (2005) in the US gas market) and the e�et of volatility transmission between the two ommoditypries, an e�et whih was highlighted before in the literature in the ase of gas and oil markets (seePindyk (2004) and Ewing et al. (2003)). Lastly, we assume a onstant dependene struture betweenthe residuals (�X;et ; �X;e0t ; �Y;et ; �Y;e0t ), thus negleting the possible orrelation lustering (see Eydeland andWolynie (2003)) and the potential relations between orrelation and volatilities (see e.g. Goorbergh etal. (2005)).4.2 Calibration of the modelTo alibrate the model, we proeed in three steps: �rst, we �nd the lags lX and lY and we estimate �and � by a linear regression of �Zt on �Zt�1 and �t; seond, we apply independent GARCH models tothe residuals of this linear regression; third, we study the dependene struture between the standardizedresiduals of the independent GARCH models. This deomposed proedure, whih is also adopted by Ngand Pirrong (1994) and Ates and Wang (2005), was motivated by the high number of parameters to beestimated.4.2.1 Estimation of lX , lY , � and �Figure (5) represent the ross-orrelations between the gas shoks and the state variables �t. We thereforehoose lX = 4 and lY = 6. Tables (8)-(9) report the results of the four linear regressions. Regardingthe ross-energy dependene on past shoks, we �nd that the ausality generally runs from oil to natural18



gas and is negative16. Regarding the inter-temporal dependene on past shoks, the ausality runs bothways between the short-term and the long-term, is positive (resp. negative) in the diretion long-term ,!short-term for oil (resp. gas) and negative in the diretion short-term ,! long-term for both energies17.Regarding the auto-orrelation of shoks, we �nd that in the short-term, oil and gas markets tend toamplify the previous move, whereas in the long-term, they are more likely to orret it.The most important results onern the reation of the shoks to the state variables (�t). As regards theimpat of the slopes, we �nd that rude oil short-term shoks tend to orret the spread between gasand oil slopes and that gas long term shoks reat positively to a positive spread between gas and oilslopes, thus having an ampli�ation e�et on the spread between the two urves. Conerning the impatof the levels, we �nd that the gas short-term shoks reat negatively to an overvalued natural gas longterm prie18, whereas the gas long-term shoks orret the deviations to the long-term equilibrium on thelevels; note that the rude oil long-term shoks are not sensitive to the di�erent state variables (�t). Weonlude that gas (resp. rude oil) plays the leading role in the slope (resp. long term prie) disovery.The low value of the R2 in the four regressions shows that the foreasting power of the model is howeverrelatively low as onerns daily shoks.

16Remember the previous remark on the negative ausality originating from the supply side made in setion 217This substitution e�et between short and long term shoks has a stabilizing impat on the futures pries18therefore there is a feedbak e�et balaning the previous ampli�ation e�et19



(a) gas slope/gas short-term shoks (b) residuals of the long-term relationon the levels/gas short-term shoks

() gas slope/gas long-term shoks (d) residuals of the long-term relationin the levels/gas long-term shoksFigure 5: Cross orrelation funtions between the gas shoks and the state variables �t with lags of 1 to 10 days; theross orrelation funtions with lag i (resp. �i) represent the orrelation between the state variables at time t and theshoks at time t+ i (resp. t� i)
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Estimate Std. Error t value Pr(> jtj)�X;gas �0:000250 0:000737 �0:339 0:735�1;1 0:106 0:0284 3:728 0:000200 ***�1;2 �0:208 0:0515 �4:044 0:0000549 ***�1;3 �0:198 0:0565 �3:495 0:000486 ***�1;3 �0:0304 0:00803 �3:786 0:000159 ***R2 = 2:82%Wald test for gasDF F Pr(> F )3 0.969 0.407Estimate Std. Error t value Pr(> jtj)�X;rude 0:00167 0:000623 2:668 0:00771 *�2;1 0:0237 0:0139 1:700 0:0893 .�2;2 0:104 0:0267 3:891 0:000104 ***�2;3 �0:0824 0:0280 �2:943 0:00330 **�2;4 0:143 0:0275 5:195 2:31:10�7 ***�2;1 0:00431 0:00233 1:847 0:0649 .�2;2 �0:0114 0:00406 �2:814 0:00494 **R2 = 4:34%Wald test for rudeDF F Pr(> F )1 2.12 0.146Table 8: Linear regression of the natural gas (resp. rude oil) short-term shoks on (�Zt�1)1;2;3 and (�t)3 (resp.(�Zt�1)1;2;3;4 and (�t)1;2); the estimated oeÆients, standard deviations, t-statistis, and two-sided p-values arereported; *** indiates signi�ane at the 0.1% level, ** at the 1% level, * at the 5% level, and : at the 10% level; theWald test for gas (resp. rude) tests the null hypothesis that �1;4 = �1;1 = �1;2 = 0 (resp. �2;3 = 0)21



Estimate Std. Error t value Pr(> jtj)�Y;gas 0:00229 0:000679 3:372 0:000765 ***�3;1 �0:0500 0:0127 �3:939 0:0000855 ***�3;2 �0:0525 0:0259 �2:028 0:0427 *�3;1 0:0116 0:00286 4:060 0:0000513 ***�3;2 �0:00892 0:00450 �1:983 0:0475 *�3;3 �0:0243 0:00480 �5:063 4:59:10�7 ***R2 = 2:72%Wald test for gasDF F Pr(> F )2 1.083 0.339Estimate Std. Error t value Pr(> jtj)�Y;rude 0:00150 0:000360 4:180 0:0000307 ***�4;2 �0:105 0:0265 �3:977 0:0000729 ***�4;4 �0:0907 0:0266 �3:411 0:000664 ***R2 = 2:58%Wald test for rudeDF F Pr(> F )5 0.148 0.981Table 9: Linear regression of the natural gas (resp. rude) long-term shoks on (�Zt�1)1;2 and (�t) (resp. (�Zt�1)2;4); the estimated oeÆients, standard deviations, t-statistis, and two-sided p-values are reported; *** indiatessigni�ane at the 0.1% level, ** at the 1% level, * at the 5% level, and : at the 10% level; the Wald test for gas (resp.rude) tests the null hypothesis that �3;3 = �3;4 = 0 (resp. �4;1 = �4;3 = �4;1 = �4;2 = �4;3 = 0)
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4.2.2 GARCH models for the volatilitiesFor the two energies, the volatilities of the short-term and long-term shoks are estimated by the standarddeviation of the shoks within a 50-days sliding window. The obtained trajetories are displayed on �gure(6): all shoks exhibit volatility lusters, jumps, and the natural gas short-term volatility follow a seasonalpattern, with high values in the winter (60 % in normal winters) and lower values in the summer (20 %on average). The phenomenon of stohasti volatility, observed in most ommodity markets, is linked tothe temporal variations of some key indiators of the supply exibility, suh as the deviation to "normal"storage level, and the proportion of spare prodution/re�ning apaity. Note also that the short-termvolatility peaks orrespond to periods of high positive forward urve slopes, an observation whih isonsistent with the theory of storage (Kaldor (1939)), and whih was also made by Ates and Wang (2005)in the US gas market. The seasonal pattern of natural gas short-term volatility an be explained by thefat that the demand is more sensitive to the temperature during the heating season and that the demandand prodution shoks have more impat on the pries during the winter, when storage is part of thesupply urve and the market is tight, than during the summer, when storage is part of the demand urveand the market is loose. The seasonal behavior of gas impliit volatilities was already observed by Blix(2003) in the US gas market.
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(a) short-term volatilities (b) long-term volatilitiesFigure 6: Annualized short-term and long-term volatilities (in %) of the two energies estimated with a 50-days slidingwindow In this setion, we model the volatility proesses of the residuals of the four previous regressions (i.e.the proesses (�t) in model (12)). Box-Piere tests on the proesses (�2t ) show the heterosedastiity ofthe di�erent residuals: data X2 df p-value(�X;gast )2 19:424 1 1:047:10�5(�Y;gast )2 17:276 1 3:233:10�5(�X;rudet )2 9:619 1 0:00193(�Y;rudet )2 26:693 1 2:385:10�7Table 10: Box-Piere tests on the proesses (�X;gast )2,(�Y;gast )2,(�X;rudet )2, (�Y;rudet )2, (�X;heatt )2, and (�Y;heatt )2; thetest-statistis, degrees of freedom of the approximate hi-square distribution of the test statistis, and p-values of thetests are reportedMoreover, �gure (6) exhibits a signi�ant seasonal omponent in the natural gas short-term volatility.The following seasonal GARCH model, proposed by Diebold (2003) for the modeling of temperature
24



series, aounts for this phenomenon:�t = �t�t�2t+1 = a1�2t + b1�2t + (a0 +Aos(2�t=252) +Bsin(2�t=252)) (13)(�t) i:i:dNote that the volatility of volatility is itself seasonal sine the volatility shoks �2t = �2t �2t have di�erentaverage winter and summer values. This harateristi is ompatible with the observation of gas short-term volatility, whih mostly luster during the winters (see �gure (6)). This model was alibrated byQuasi-Maximum Likelihood on natural gas short-term residuals (�X;gast ). The log-likelihood of the modelin the ase of Gaussian residuals (�t) is:LL = � NXt=1 � �2t2�2t + log(�t)�� N2 log(2�)The alibration of model (13) (available on request) reveals that the oeÆient A is not signi�ant. Theestimation of the model imposing A = 0 is provided in Table (11). Table (12) reports the results of theEstimate Std. Error t value Pr(> jtj)a1 0:155 0:0108 14:377 < 2:10�16 ***b1 0:752 0:0367 20:528 < 2:10�16 ***a0 0:0000884 0:0000228 3:883 0:000103 ***B �0:0000491 0:0000152 �3:234 0:00122 **Table 11: Quasi-Maximum-Likelihood estimation of a seasonal GARCH model on (�X;gast ); the estimated oeÆients,standard deviations, t-statistis, and two-sided p-values are reportedJarque-Bera (resp. Box-Piere) tests on the residuals (resp. squared residuals) of the seasonal GARCHmodel. The Jarque-Bera tests allow us to rejet the hypothesis of Gaussian residuals. By ontrast, weannot rejet the hypothesis of independene for the squared residuals, whih is an indiation of the validityof the model. Figure (7) plots the trajetories of (�X;gast )2 together with the variane (�t)2 predited bythe seasonal GARCH models and the long-term seasonal variane funtions a0 +Bsin(2�t=252).
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Jarque-Beradata X2 df p-value�X;gast 2354:378 2 2:2:10�16Box-Pieredata X2 df p-value(�X;gast )2 0:0069 1 0:934Table 12: Jarque-Bera and Box-Piere tests on the residuals of the seasonal GARCH model for natural gas; the teststatistis, degrees of freedom, and p-values of the tests are reportedWe model the other series by lassial GARCH models, whose implementation is not reported here.
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Figure 7: Trajetories of (�X;gast )2 (blak), variane �2t predited by a seasonal GARCH model (red), and long-termvariane 11�a1�b1 (a0 +Bsin(2�t=252)) (green)4.2.3 Dependene struture of the standardized o-movementsWe model the dependene struture of the residuals (�) using the opula representation:P(�X;et � z1; �X;e0t � z2; �Y;et � z3; �Y;e0t � z4) = C(FX;e(z1); FX;e0 (z2); F Y;e(z3); F Y;e0(z4)) (14)where the opula funtion C is de�ned in [0; 1℄4 with values in [0; 1℄, and (FX;e; FX;e0 ; F Y;e; F Y;e0) denotethe marginal distributions of the residuals (�X;e; �X;e0 ; �Y;e; �Y;e0). We will use here the Gaussian opulade�ned by: C(u1; u2; u3; u4) = �4�(��1(u1);��1(u2);��1(u3);��1(u4)) (15)where �4� is a 4-variate normal distribution of orrelation matrix �, and ��1 is the inverse of the univariatestandard normal distribution. As explained in Joe and Xu (1996), the alibration of the model (14) isdone in two steps:- we �rst �t the marginal densities (fX;e; fX;e0 ; fY;e; fY;e0) of the di�erent shoks using the Skewed Gen-eralized Error Distribution (SGED); the obtained parameters and goodness-of-�t results, whih are notreported here, indiate the relevane of this representation- one the marginal distributions are determined, the orrelation matrix � is estimated by omputing the
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empirial Kendall's �19 for eah pair, whih is linked to the orrelation matrix of the Gaussian opulathrough the relation � = 2� arsin(�) (see Lindskog et al. (2003))The estimates of matrix orrelations � for the pair gas/rude oil are reported on tables (13). We notethat all orrelations are signi�antly positive.short-term gas short-term rude long-term gas long-term rudeshort-term gas 1 0:282 0:623 0:294short-term rude 0:282 1 0:300 0:470long-term gas 0:623 0:300 1 0:380long-term rude 0:294 0:470 0:380 1Table 13: Estimation of the orrelation matrix of the Gaussian opula4.3 Evolution of the orretion mehanismsTable (14) reports the separate estimations of matrix � on the periods January 1999-Deember 2001,January 2002-Deember 2003 and January 2004-July 2005, and ompares them with the global estimatoron the whole period January 1999-July 2005: we observe �rst that the signs of the oeÆients �1;3 and�3;3, expressing the orretion of the deviations to the long-term relation between gas and oil levels,have been stable throughout the period under study; onversely, the pairs (�2;1;�2;2) and (�3;1;�3;2),expressing the sensitivity to the gas and oil slopes have had a di�erent behavior on the most reent period,the former swithing signs, and the latter beoming non-signi�ant.

19the empirial Kendall's � expressing dependane between two samples (Xt) and (Yt) is omputed by �(X;Y ) =1C2n P1�i1�i2�N sign(Xi1 �Xi2)(Yi1 �Xi2) 28



Global Jan 1999-De 2001 Jan 2002-De 2003 Jan 2004-Jul 2005�1;3 �0:0304��� �0:0264�� �0:03510:103 �0:0835:�2;1 0:00431: 0:00657� 0:0103: �0:00921:�2;2 �0:0112�� �0:0167�� �0:0319�� 0:006480:325�3;1 0:0116��� 0:0150��� 0:0127: 0:001130:871�3;2 �0:00892� �0:009480:157 �0:0203: 0:004360:571�3;3 �0:0243��� �0:0241��� �0:0303� �0:0611�Table 14: Estimation of the error-orretion parameters on the three periods; *** indiates signi�ane at the 0.1%level, ** at the 1% level, * at the 5% level, and : at the 10% level; p-values above 10% are reported below the estimatedparameters4.4 Evolution of the orrelationsThe objetive here is to study the stability of the dependene struture whih was found between theforward urves o-movements. Figure (8) represents the temporal evolution of the orrelation between gasand oil short-term (resp. long-term) shoks derived from Kendall's �20 (with a one-year sliding window).Both orrelations display an upward trend on the period. Possible explanations for this observation arethe orrelation indued by the growing investment of hedge funds in the ommodity asset lass and thefat that, in ommodity markets, in ontrast to equity markets, orrelation is generally bigger whenpries are rising. To aount for this trend in the dependene struture, we have estimated (followingRokinger and Jondeau (2001)) a bi-variate normal opula model with a quadrati trend in the orrelationoeÆient21 for the two pairs gas short-term shoks/oil short-term shoks and gas long-term shoks/oillong-term shoks: Ct(u1; u2) = �2�t(��1(u1);��1(u2)) (16)�t = a+ bt2 (17)where �2� is the bivariate normal distribution with orrelation oeÆient �, and a, b are unknown pa-rameters desribing the temporal evolution of the orrelation oeÆient. The log-likelihood of the opula20� = 2� arsin(�)21The term expressing linear dependene with respet to time is not inluded here in the model as it was not found signi�ant29



(a) short-term gas/short-term rude (b) long-term gas/long-term rudeFigure 8: sin(�2 �) as a funtion of time (with a one-year sliding window) and quadrati trend a + bt2 estimated bymaximum-likelihoodmodel (16)-(17) is:LL(�; F e; F e0) = NXt=1 ln ht(F e(�et ); F e0(�e0t ))i+ NXt=1 �ln [fe(�et )℄ + ln hfe0(�e0t )i� (18)In (18), (fe; fe0) are the univariate densities, (F e; F e0) are the univariate umulative distributions,(�et )1�t�N are the observations for energy e, and t is the density of the bi-variate normal opula oforrelation oeÆient �t = a+ bt2:t(u1; u2) = �2Ct�u1�u2= ��t (��1(u1);��1(u2))�(��1(u1))�(��1(u2))where ��(x; y) = 12�p1��2 exp�� 12p1��2 �x2 + y2 � 2�xy�� is the bi-variate normal density for orrela-tion oeÆient �, and � is the density of the N(0; 1) distribution. The parameters a and b maximizing theterm PNt=1 ln ht(F e(�et ); F e0(�e0t ))i in (18) are reported on Table (15) and the obtained quadrati trendplotted in Figure (8).
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gas/rude short-term shoks Estimate Std. Error t value Pr(> jtj)a 0:176 0:0337 5:29 1:25:10�7 ***b 1:12:10�7 2:64:10�8 4:25 2:16:10�5 ***gas/rude long-term shoks Estimate Std. Error t value Pr(> jtj)a 0:235 0:0321 7:33 2:34:10�13 ***b 1:379:10�7 2:19:10�8 6:30 3:06:10�10 ***Table 15: Maximum-likelihood estimation of the quadrati trend in the orrelation between oil and gas5 ConlusionThis paper has presented a new dependene model for ommodity forward urves. Like popular models onsingle ommodity forward urves, it deomposes the forward urve moves into a short-term and a long-termshoks, with stohasti and possibly seasonal volatilities. The orrelation between the shoks of the twourves is aptured through a non-Gaussian dependene struture. The originality of the model is that, inaddition to this loal dependene struture, it aounts for the long-term relations between the ommodityforward pries through an error-orretion term in the risk-premia of the forward prie returns. The long-term relations are based on the state variables desribing the shape of a forward urve under the two-fatormodel, namely the slope and level. Our urrent researh onerns the modeling of stohasti dependenestruture, and the impliations of the model for multi-ommodity asset priing, risk measurement, andportfolio optimization. As far as asset priing is onerned, Duan and Pliska (2004) have shown that theombination of ointegration and stohasti volatility has an impat on asset pries: thus the model wouldlead to di�erent priing results than standard loal dependene models without risk-premia. Regardingrisk management, the model, beause it aptures the long-term relations between two urves, allows oneto realistially simulate portfolios' Earning-at-Risk on a long-term perspetive. With respet to portfoliooptimization, our error-orretion model allows the portfolio manager to foreast the relative evolutionsof the two onsidered forward urves given their initial slopes and levels, a property whih has numerousimpliations; hedge funds will be provided with diretional strategies based on long/short positions on31
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