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Abstra
tThe goal of this paper is to present and 
alibrate a model for the joint evolution of 
orrelated 
om-modity forward 
urves. The main originality of the model is that it 
aptures both the lo
al and globaldependen
e stru
tures of two forward 
urves, through an error-
orre
ting term in the risk-premia of theforward pri
e returns. The model is applied here to the US oil and gas forward markets, whi
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onomi
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and optimization of portfolios 
omposed of multi-
ommodity assets su
h as gas-�red power plants, oil-indexed natural gas 
ontra
ts, or oil re�neries. Indeed, the �nan
ial value of a multi-
ommodity asset is afun
tion of the entire forward 
urves and the hedging strategies for multi-
ommodity portfolios are basedon futures 
ontra
ts rather than spot transa
tions. As a 
onsequen
e, a model des
ribing the evolution of
ommodity spot pri
es only, provides a partial view of the risks/value entailed in su
h portfolios and ofthe possible a
tions of the portfolio manager. A model des
ribing the joint evolution of two 
ommodityforward 
urves should 
apture at the same time their global and lo
al dependen
e stru
tures. The lo
aldependen
e stru
ture des
ribes the volatilities, the marginal densities and the 
orrelations of the dailyforward 
urve moves. A framework of analysis for this type of dependen
e was des
ribed in Clewlowand Stri
kland (2000), who propose to extend the 
lassi
al PCA on one 
ommodity forward 
urve to aPCA on the returns of two 
ommodity forward 
urves, thus obtaining several types of 
o-movements ofthe two forward 
urves. By 
ontrast with the lo
al dependen
e stru
ture, the global dependen
e stru
turedes
ribes the long-term relations existing between 
ommodity pri
es1. Mu
h attention has been devotedto the study of 
ointegration between series of di�erent spot/futures 
ommodity pri
es2, with a viewto des
ribing the intera
tion between several parti
ular points in the same forward 
urve or in di�erentforward 
urves (for example the relations between the front-month pri
es of a pair of 
ommodities or therelations between the spot and front-month pri
es of the same 
ommodity). There is extensive work also onthe evolution of a single interest rate or 
ommodity forward 
urve, either for fore
asting (see Diebold andLi (2003)) or VaR 
al
ulation (see e.g. Brooks (2001)). But no work, to our knowledge, has ever proposeda framework to simulate the evolution of two entire 
ommodity forward 
urves, des
ribing the way the two
urves "revert to ea
h other". The retained approa
h for this problem follows Pilipovi
 (1997), Manoliuand Tompaidis (2002), S
hwartz and Smith (2000), and Geman and N'Guyen (2005), who de
omposethe daily deformations of a forward 
urve into a short-term sho
k, a�e
ting only the �rst maturities,1two frequent examples of long-term intera
tions between 
ommodity markets are the possibility to use a given 
ommodityto produ
t another one (natural gas to produ
e power, 
rude oil to produ
e heating oil...) or to use a given 
ommodity as asubstitute to another one (e.g. heating oil instead of natural gas for heating, 
oal instead of natural gas to produ
e power)2see e.g. Alexander (1999) for a study of the 
ointegration between gas/oil spot and futures pri
es on the NYMEX, Atesand Wang (2005) for an analysis of the relations between spot and �rst-near by natural gas pri
es in the US, Siliverstovs etal. (2005) for an analysis of 
ointegration between Japanese, European, and North Ameri
an gas pri
es, Nguyen (2002) for theanalysis of the 
ointegration between the futures pri
es of metals on the London Metal Ex
hange, Pekka and Antti (2005) forthe study of 
ointegration between spot and futures ele
tri
ity pri
es on the NordPool2



and a long-term sho
k, 
onsisting of an overall translation of the forward 
urve. Regarding the lo
aldependen
e stru
ture, the model 
aptures, on the one hand, the 
ausal relations between the daily short-term and long-term sho
ks of the two 
ommodities, and on the other hand, the time-dependent volatilitiesof the four 
omovements (see e.g. Geman and Nguyen (2005), Ri
hter and Sorensen (2000), and DuÆe(2002), for eviden
e of sto
hasti
ity of the volatility of 
ommodity pri
es, and Blix (2003) for eviden
e ofseasonality of natural gas impli
it volatility), and their possibly non Gaussian dependen
e stru
ture. Theapproa
h to 
apture the long-term relations between two forward 
urves 
an be viewed as an extensionof the 
on
ept of 
ointegration to forward 
urves. The de
omposition of the forward 
urve daily movestranslates into a de
omposition of the shape of the forward 
urve into a seasonal term, slope3 and level.The long-term relationships between the two 
ommodity forward 
urve slopes and levels are looked forand the deviations to these equilibriums be
ome predi
tive variables for the future relative evolution ofthe two 
urves. The model is applied here to the US natural gas and 
rude oil markets during the periodJanuary 1999-July 2005. These two markets, in spite of their di�eren
es, are intertwined by e
onomi
relations, from the 
onsumption side and the produ
tion side. Regarding the lo
al dependen
e stru
ture,we �nd eviden
e of 
ausal relations between natural gas and 
rude oil sho
ks, sto
hasti
 volatility forthe di�erent sho
ks, seasonal volatility for natural gas short-term sho
ks only, and positive 
orrelationsbetween the 
o-movements of oil and gas forward 
urves. Regarding the global dependen
e stru
ture, ouranalysis highlights the existen
e of a strong long-term relationship between the levels of natural gas andoil (with two break points o

urring in the beginning of year 2000 and in the middle of year 2003), and ofa weaker long-term relationship between gas and oil slopes. The analysis of the temporal stability of themodel parameters reveals that the 
orrelations between the daily 
o-movements of oil and gas forward
urves have in
reased signi�
antly throughout the period 1999-2005.I view the 
ontribution of this paper as twofold: from an e
onomi
 standpoint, the presented forward
urve model sheds light on the relations between the natural gas and oil markets in the US, in parti
ularthe lead and lag properties between the two energies; from a statisti
al standpoint, the model proposedhere opens a new avenue for the modeling of the joint evolution of several 
orrelated forward 
urves,giving a simple way to 
apture in a single arbitrage-free model the long-term relations between the shapesof di�erent forward 
urves and the lo
al statisti
al relations between their daily 
o-movements.The rest of this paper is organized as follows. In se
tion 2, we des
ribe the e
onomi
 relations between oil3depending on the sign of the slope, the 
urve will be said to be in 
ontango or in ba
kwardation3



and natural gas markets in the US, from the demand side and the o�er side. In se
tion 3, we present thetwo-fa
tor model and des
ribe the global and lo
al dependen
e stru
tures between oil and gas forwardpri
es in the US. In se
tion 4, the model is pre
isely 
alibrated and the temporal stability of the modelparameters is studied. Se
tion 5 
ontains 
on
luding 
omments.2 The e
onomi
 relations between oil and natural gas in the USEven though the natural gas market is a 
ompetitive and lo
al market whereas the 
rude oil market is anoligopolisti
 and global market, the natural gas and oil pri
es are intertwined by strong e
onomi
 relations,emanating from both the demand and supply sides. Industry represents approximately 30% and powergeneration 20% of the global US gas 
onsumption4. On the whole, the global available swit
hing potentialrepresents around 5% of the natural gas 
onsumption in the US, 30% 
oming from industry, the rest frompower generation. Around 4.3% of the natural gas 
onsumption of the industrial se
tor is swit
hable:these 
ustomers are equipped with dual-fuel 
apa
ity (essentially boilers and pro
ess heaters), allowingthem to swit
h from gas to oil (generally distillate or residual fuel oil) depending on the market pri
esof the two energies5. As regards power generation, the fuel-swit
hing potential represents 20% of the gas
onsumption, but is expe
ted to de
line due to the progressive repla
ement of dual-fuel steam boilers bygas-�red 
ombined 
y
les fa
ilities. Fuel-swit
hing implies a dependen
e between oil and gas pri
es whi
his both in the very short term (due to existing swit
hing 
apa
ities), and in the medium-long-term (dueto te
hnology 
hanges following a sustained period of abnormally high natural gas or oil pri
es).Be
ause industrials or ele
tri
ity produ
ers often lo
k in their margins using the forward markets, weexpe
t positive 
orrelations not only between oil and gas spot pri
es but between oil and gas forward pri
esas well. This 
onvergen
e between gas and oil forward markets is reinfor
ed by the 
urrent behavior ofhedge funds and �nan
ial investors, who tend more and more to 
onsider the di�erent 
ommodity marketsas a uni�ed asset 
lass (see Geman (2005)).The dependen
e between oil and natural gas pri
es in the US is also originating in the supply side. Inthis 
ase, two e�e
ts play in opposite dire
tions. On the one hand, as natural gas is a 
o-produ
t of oil, arise in 
rude oil pri
es provokes an in
rease of the supply of 
rude oil, whi
h in turn leads to an in
reased4All data are found in Ameri
an Gas Foundation (2003)5Note that the re
ent environmental regulations, imposing air pollutant emission 
onstraints or 
osts to industrials, tend toprevent them from using distillate fuel or 
oal as substitutes to natural gas4



produ
tion of natural gas, thus putting a downward pressure on natural gas pri
es; on the other hand,as the Gulf of Mexi
o 
on
entrates major gas and oil �elds, gas pro
essing plants, and oil re�neries, thesupply of natural gas and oil distillate produ
ts in the US are both strongly dependent on the frequentnatural events striking this region: for example, when Katrina, Rita, and Wilma made landfall, theya�e
ted at the same time the produ
tion of natural gas, Crude Oil, and re�ned produ
ts in the US, thus
ausing a simultaneous rise in pri
es of the two energies.3 Empiri
al observation of the dependen
e between oil and gasforward 
urves in the US3.1 Data des
riptionThe data used here are the NYMEX daily futures pri
es of natural gas and 
rude oil from January 1999to the end of August 2006. For the three energies, the pri
es are the 1st month, 2nd month,...,15th monthfutures pri
es. Con
erning natural gas, the pri
e is based on delivery at the Henry Hub in Louisiana. Thefutures pri
es are expressed in dollars per Million British Thermal Units (MMBtu). For 
rude oil, theNYMEX futures 
ontra
ts's delivery point is Cushing, Oklahoma, and the pri
es are expressed in dollarsper barrel.
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(a) 
rude oil futures pri
es in dollars/Barrel (b) natural gas futures pri
es in dollars/MMBtuFigure 1: Pri
e traje
tories from January 1999 to August 2006Figure (1) represents the traje
tories of 1st month and 13th month futures pri
es for the two energies:� the trends of natural gas and oil long term pri
es display a parallel dire
tion� even though the 1st month natural gas futures pri
e exhibits mu
h larger moves than oil within theperiod, oil and gas approximately share the same ba
kwardation and 
ontango periods67� the period 1999-2004 
an be separated into several subperiods:{ from January 1999 to end of 2001, the two traje
tories display a "bump": they �rst follow anupward trend until the end of 2000, and then a de
ay until the end of 2001{ in the years 2002-2003, gas pri
es start rising while oil pri
es remain stable{ from the beginning of 2004 to now on, the two energies display a very 
lear surge{ during the period August 20058-February 2006, the natural gas short-term and long-term pri
esdisplayed a pronoun
ed spike, whi
h was observed also but to a mu
h lesser extent on the 
rudeoil market6Remark that the e�e
t of the seasonality in the gas forward 
urve is �ltered out here sin
e the delivery periods of the twoobserved 
ontra
ts are distant from one year7There are a few notable ex
eptions to this rule su
h as the summer 2004, when the gas forward 
urve was in 
ontango andthe 
rude oil 
urve was ba
kwardated8time of Hurri
ane Katrina's landfall in the Gulf of Mexi
o6



From now on, we will restri
t our analysis of the dependen
ies between oil and gas to the period beginningin January 4, 1999 and ending in July 29, 2005, based on the observation that Katrina's landfall provokeda temporary dis
onne
tion in the normal long-term relations between oil and gas markets.3.2 De
omposition of daily forward 
urve moves into short term and long-term sho
ks3.2.1 Justi�
ation and interpretation of the de
ompositionIn Figure (2), it appears that forward 
urve moves de
ompose into a long-term sho
k, whi
h provokes aglobal upward or downward translation of the forward 
urve, and a short term sho
k, whi
h only impa
tsthe short term futures pri
es, with an amplitude that de
ays with time-to-maturity. In e
onomi
 terms,the interpretation of the de
omposition is the following:� the short term sho
k refers to events that are expe
ted to a�e
t the market for a limited period oftime (temperature 
hange, transitory supply shortage or transportation 
ongestion...)9� the long-term sho
k relates to events or news that potentially impa
t the long-term energy pri
e(news about the likelihood of a war or politi
al instability in an oil produ
ing 
ountry, dis
losure oflower than expe
ted reserves...)

9One 
ould wonder why events of weekly time s
ale su
h as a temperature drop or a bottlene
k in the transportation systemshould a�e
t the pri
es of the 
ontra
ts delivering in the following months; this link between spot and forward markets isexplained by the storability of the three 
onsidered energies. Indeed, tensions in the day-ahead market prompt utilities anddistribution 
ompanies to pump on their reserves in order to take advantage of high spot pri
es or be able to deliver their �rm
lients; this in turn 
reates a situation of s
ar
ity in the medium term, whi
h, as explained by the theory of storage, has a dire
timpa
t on the slope of the monthly forward 
urve 7



(a) natural gas futures pri
es (in $/MMBtu) as a fun
-tion of time to maturity (in months) from January, 4thto January 19th, 1999 (b) Natural gas futures pri
es returns as a fun
tion oftime to maturity (in months) from January 5th to May27th, 1999Figure 2: De
omposition of returns into a short and long term sho
ks3.2.2 Mathemati
al formulation of the de
ompositionWe denote F e(t; T ) the futures pri
e at time t of a futures 
ontra
t with settlement date T written on theenergy produ
t e. We assume the following arbitrage-free daily evolution model for the forward 
urve ofenergy e: �F e(t; T )F e(t; T ) = e�ke(T�t)�Xet +�Y et (1)�Xet = �e;Xt + �e;Xt �e;Xt�Y et = �e;Yt + �e;Yt �e;Ytwhere:� (�e;Xt ) and (�e;Yt ) are (Ft)-adapted pro
esses representing the drifts� (�e;Xt ) and (�e;Yt ) are (Ft)-adapted pro
esses representing the volatilities� (�e;Xt ) and (�e;Yt ) are 
orrelated pro
esses formed of i.i.d variables� 1ke represents the 
hara
teristi
 time of the short term sho
k
8



3.2.3 Cal
ulation of the short term and long-term sho
ksAssuming that the short term sho
k does not a�e
t the 14th month return10, the short term and long-termsho
ks 
an be readily derived from the observed short term and long-term returns of energy e:�Y et = ��F e(t; T14)F e(t; T14) �obs (2)�Xet = eke(T1�t)��F e(t; T1)F e(t; T1) � �F e(t; T14)F e(t; T14) �obswhere the variable Ti denotes the last trading day of the i-th month futures 
ontra
t observed at date t.3.2.4 Estimation of the short term 
hara
teristi
 time for the three energiesTo estimate ke for the two energies, we minimize the root mean squared errors (RMSE) i.e., the root ofthe mean squared di�eren
es between the observed returns and the model implied returns��F e(t; Ti)F e(t; Ti) �model = ��F e(t; T14)F e(t; T14) �obs + e�ke(Ti�T1)��F e(t; T1)F e(t; T1) � �F e(t; T14)F e(t; T14) �obs (3)Therefore, we solve, for ea
h energy e, the following programme:Mke inRMSE =vuut 1N � 14 NXt=1 14Xi=1 ���F e(t; Ti)F e(t; Ti) �obs ���F e(t; Ti)F e(t; Ti) �model�2 (4)where N is the number of observations. 
rude oil natural gaske 2:60 3:301ke (in months) 4:61 3:64(RMSE)2(RMSR)2 (in %) 1:41 5:56Table 1: ke and unexplained varian
es for the two energies; RMSE (resp. RMSR) stands for the root mean squarederrors (resp. returns)Table (1) reports the short term 
hara
teristi
 times of the three energies. As a �rst observation, these
hara
teristi
 times are 
ompatible with the assumption 3 � 1ke < 14 months, whi
h helped us 
al
ulatethe short term and long-term sho
ks. In addition, we observe that the short term 
hara
teristi
 time ofnatural gas is signi�
antly smaller than the one of 
rude oil. The e
onomi
 interpretation is that the short10This is equivalent to the assumption 3� 1ke < 14 months 9



term sho
ks in the natural gas lo
al market are linked to very short-lived events (e.g., sudden drop oftemperature in the US, bottlene
k in the gas transportation system et
...) whereas the short term sho
ksin the global 
rude oil market 
orrespond to events with a longer time s
ale (e.g. dis
losure of a lowerthan expe
ted world inventory).In addition, Table (1) reveals that the performan
e of the model in explaining the varian
e of theobserved returns is signi�
antly lower for natural gas (with an unexplained varian
e of 5:56%) than foroil (with an unexplained varian
e of 1:41%). A plausible explanation is that the relative importan
e of"twist" moves (whi
h are not a

ounted for in the two fa
tor model) in the global forward 
urve volatilityis more pronoun
ed for natural gas than for oil. This is 
on�rmed by a Prin
ipal Component Analysis onthe 14 series of forward 
urve returns, whose results are displayed in table (2):
rude oil natural gas1st fa
tor 96:64% 93:21%2nd fa
tor 2:91% 4:69%3rd fa
tor 0:33% 1:18%Table 2: Proportion of overall varian
e explained by the 1st (translation), 2nd (rotation), and 3rd fa
tors (twists) forthe two energies3.3 Slope and level: two state variables for the shape of the forward 
urveThe evolution model (1) implies a forward 
urve shape model. Indeed, if we negle
t the se
ond-orderterms: �lnF e(t; T ) � �F e(t; T )F e(t; T ) = e�ke(T�t)�Xet +�Y etand we obtain the following expression for the shape of the forward 
urve at date t:lnF e(t; T ) = lnF e(0; T ) + tXs=0 e�ke(T�s)�Xes + tXs=0�Y es (5)Let us assume that the shape of the initial forward 
urve is of the type:lnF e(0; T ) = Q(T ) + e�keT �Xe0 + Y e0 (6)
10



where T takes integer values representing months and Q is a fun
tion of period one year and zero mean.Then, equation (5) leads to: lnF e(t; T ) = Q(T ) + e�ke(T�t) �Xet + Y et (7)with: �Xet = �X0e�ket + tXs=1 e�ke(t�s)�Xes (8)Y et = Y0 + tXs=1�Y es (9)Equation (7) shows that, under model (1), the shape of the forward 
urve at any date t is the superpositionof a seasonal fun
tion Q(T ), a slope �Xt, and a level Yt. The slope and level 
an be derived from the dailysho
ks (�Xet ;�Y et ) via (8)-(9). The slope follows a mean-reverting pro
ess driven by the short termsho
ks and the level a random walk driven by the long-term sho
ks:�Xet = �Xet��te�ke�t +�Xet (10)Y et = Y et��t +�Y et (11)The forward 
urve model (7) has very 
lassi
al e
onomi
 interpretations: the seasonality of the forward
urve is explained by a stru
tural imbalan
e between winter and summer 
onsumptions and by the smallnumber of market parti
ipants having a

ess to storage reservoirs; the level is related to the long-termpri
e of the 
ommodity and the slope to the bene�t (
lassi
ally referred to as the "
onvenien
e yield")of holding the physi
al 
ommodity vs holding a 
ontra
t for future delivery. Fama and Fren
h (1988) inparti
ular use the slope of the forward 
urve as a proxy for the inventory level.The level at any date is 
omputed using formula (11), the level at the �rst date being initialized at 011.The slope is estimated by "inversion" of formula (7) using the observed 1st month and 13th month logfutures pri
es at date t: �Xet = eke(T1�t)ln(Fe(t; T1)=Fe(t; T13))From now on, we will refer to the relations between slopes and levels as the global dependen
e stru
tureand to the 
orrelation and 
ausal relations between daily sho
ks as the lo
al dependen
e stru
ture.11the level re
e
ts the gains of an investor holding a 
onstant sum of $1 in the 15-th month futures 
ontra
t and rolling overhis position at ea
h last trading day 11



(a) Slopes (b) LevelsFigure 3: Slopes and levels of the two energies3.4 Analysis of global dependen
e stru
ture3.4.1 Stationarity properties of the slopes and levelsTable (3) reports the results of the Phillips-Perron unit root tests on the slopes and levels of the twoenergies. Not surprisingly, the hypothesis of a unit root 
an be reje
ted for the slopes but not for thelevels.

12



Di
key-Fuller Lag Parameter p-valueCrude oil slopePP �3:833 8 0:017ADF �3:552 11 0:037Natural gas slopePP �3:713 8 0:023ADF �3:319 11 0:0674Crude oil levelPP �0:704 8 0:970ADF �0:57 11 0:979Natural gas levelPP �1:835 8 0:648ADF �1:674 11 0:717Table 3: Phillips-Perron (PP) and Augmented-Di
key-Fuller (ADF) unit-root tests on the slopes and levels of thetwo energies; the test-statisti
s, trun
ation lag parameters, and p-values of the tests are reported3.4.2 Long-term relation between forward 
urve slopes and levelsFigure (4(a)) displays the relation between natural gas and 
rude oil slopes. We see that, when the naturalgas forward 
urve is in ba
kwardation (positive slope), the oil forward 
urve is also in ba
kwardation12.However, a ba
kwardated oil 
urve does not ne
essarily imply a ba
kwardated natural gas forward 
urve.In parti
ular, year 2002 experien
ed a ba
kwardated oil 
urve and a natural gas forward 
urve in 
ontango.The results of the linear regression of natural gas slope on 
rude oil slope are reported on table (4). Notethat the regression 
oeÆ
ients is very 
lose to 1, the regression R2 being around 30%.
12note however that there are outliers in the linear relation: for instan
e, during the winters 2000-2001 and 2002-2003, thenatural gas slope was very high while the oil slope was mildly positive13



Estimate Std. Error t value Pr(> jtj)b
rude �0:113 0:00594 �19:12 < 2:10�16 ***a
rude 0:906 0:0365 24:80 < 2:10�16 ***R2 = 27:25%Table 4: Linear regression of natural gas slope on 
rude oil slope: a denotes the regression 
oeÆ
ient and b theinter
ept; the estimated 
oeÆ
ients, standard deviations, t-statisti
s, and two-sides p-values are reported; *** indi
atessigni�
an
e at the 0.1% level, ** at the 1% level, * at the 5% level, and : at the 10% level

(a) natural gas slope in terms of 
rude oil slope (b) natural gas level in terms of 
rude oil levelFigure 4: Left: natural gas slope in terms of 
rude oil slope; the linear �t is displayed in dotted lines; Right: naturalgas level in terms of 
rude oil level; the linear �t is displayed in dotted lines and the best three-lines �t is displayed inbold lines; in both graphs, the sequen
e of 
olors red, yellow, green, blue, purple, red marks the passage of time fromJanuary 1999 to July 2005
14



Figure (4(b)) displays the relation between natural gas and 
rude oil levels: a pie
ewise-linear relationappears, with two break points o

urring at the beginning of year 2000, where gas long-term futures pri
essurge13, and in the middle of year 200314, where oil long-term futures pri
es start rising sharply.Tables (5) and (6) report the results of the 
lassi
al linear regression and the pie
ewise-linear regressionof gas level on 
rude oil level. First, we see that the R2 is mu
h higher than for the regression on theslopes: the long-term equilibrium between the levels is mu
h stronger than the long-term relation betweenthe slopes. Se
ond, the pie
ewise-linear regression 
oeÆ
ients are signi�
ant, whi
h 
on�rms the validityof the pie
ewise linear model, and of the same negative sign, 
ausing the gas long-term pri
e to be lesssensitive to the variations of oil long-term pri
e above the up-threshold �Y and below the down-thresholdY. Lastly, Table (7) shows that the unit-root hypothesis H0 
an be reje
ted by the Phillips-Perron testbut not by the Augmented-Di
key-Fuller test for the residuals of the pie
ewise linear relation betweengas and oil levels; in addition, H0 
annot be reje
ted by either test for the residuals of the linear relationbetween gas and oil levels. As a 
on
lusion, only the pie
ewise linear relation allows one to obtain thedesired stationary residuals.Estimate Std. Error t value Pr(> jtj)b
rude �0:0548 0:00714 �7:672 2:89�14 ***a
rude 0:972 0:00654 148:568 < 2:10�16 ***R2 = 93:09%Table 5: Linear regression of natural gas level on 
rude oil level: a denotes the regression 
oeÆ
ient and b theinter
ept; estimated 
oeÆ
ients, standard deviations, t-statisti
s, and two-sided p-values are reported; *** indi
atessigni�
an
e at the 0.1% level, ** at the 1% level, * at the 5% level, and : at the 10% level
13Several events triggered this run-up: the oil pri
e rise, setting a higher ba
kstop pri
e for natural gas, the la
k of drillinga
tivity in the previous years due to low gas pri
es, the hot weather in the Southwest and redu
ed hydroele
tri
 generation,and lastly the resumed growth of gas 
onsumption in the industrial se
tor14During this period, 
orresponding to the invasion of Iraq, the oil market spare 
apa
ity de
lined due to the loss of produ
tion
apa
ity in Iraq and Venezuela and to the growing international demand15



Estimate Std. Error t value Pr(> jtj)b
rude �0:586 0:0139 �42:28 < 2:10�16 ***a
rude 1:627 0:0160 101:72 < 2:10�16 ***a�
rude �0:982 0:0222 �44:29 < 2:10�16 ***a+
rude �1:250 0:0387 �32:32 < 2:10�16 ***Y
rude = 0:474 �Y
rude = 1:0668 R2 = 96:86%Table 6: Pie
ewise-linear regression of natural gas level on 
rude oil level; the regression variables are Ye, (Ye�Ye)� =Min(0;Ye�Ye), and (Ye� �Ye)+ =Max(0;Ye� �Ye), with e=
rude oil; a denotes the di�erent regression 
oeÆ
ients andb the inter
epts; the thresholds Ye and �Ye are determined by the minimization over the 
ouples (Ye; �Ye) of the sum ofsquared residuals of the regression of Ygas on the variables Ye, (Ye �Ye)�, and (Ye � �Ye)+; the estimated 
oeÆ
ients,standard deviations, t-statisti
s, and two-sided p-values are reported; *** indi
ates signi�
an
e at the 0.1% level, **at the 1% level, * at the 5% level, and : at the 10% level
Pie
ewise linear relation Di
key-Fuller Lag Parameter p-valuePP �3:831 8 0:0174ADF �2:902 11 0:197Linear relation Di
key-Fuller Lag Parameter p-valuePP �2:031 8 0:565ADF �1:586 11 0:753Table 7: Phillips-Perron and Augmented-Di
key-Fuller unit root tests on the residuals of the pie
ewise linear (up)and linear (down) relations between gas and oil levels; the test-statisti
s, trun
ation lag parameters, and p-values ofthe test are reported 16



4 A new dependen
e model for pairs of 
ommodity forward
urves4.1 Formulation of the modelWe want to introdu
e an error-
orre
tion me
hanism on the levels and on the slopes between the energiese and e0. Therefore, we postulate that the drifts are the sums of a 
onstant part, a term expressingdependen
e on past returns (with a maximal lag of one day15, and an error-
orre
tion term:0BBBBBBBBBB�
�Xet�Xe0t�Y et�Y e0t

1CCCCCCCCCCA = 0BBBBBBBBBB�
�X;e�X;e0�Y;e�Y;e0

1CCCCCCCCCCA+ �0BBBBBBBBBB�
�Xet�1�Xe0t�1�Y et�1�Y e0t�1

1CCCCCCCCCCA+�0BBBBBB� �Xet�lX�Xe0t�lXRYt�lY
1CCCCCCA+0BBBBBBBBBB�

�X;et�X;e0t�Y;et�Y;e0t
1CCCCCCCCCCA (12)

RYt = Y et � fe;e0Y (Y e0t )In the model (12):� e stands for natural gas and e0 stands for 
rude oil� � = (�X;e; �X;e0 ; �Y;e; �Y;e0) is the 1� 4 ve
tor 
omposed of the 
onstant part of the drifts� � is a 4� 4 matrix expressing dependen
e on past returns� �Xet and Y et denote the slope and level of the forward 
urve of the energy e� x ! fe;e0Y (x) is the relation between the levels of energy e and e0 (in the 
ase of gas and oil, fY ispie
ewise linear fun
tion)� (RYt ) is the pro
ess 
omposed of the deviations to the long-term relation between the levels� � is a 4 � 3 matrix expressing sensitivity to the slopes and deviations to the long-term relationbetween the levels� lX (resp. lY ) refers to the lags between the observed slopes (resp. level deviations) and the 
orre
-tions me
hanisms� the pro
esses (�X;et = �X;et �X;et ; �X;e0t = �X;e0t �X;e0t ; �Y;et = �Y;et �Y;et ; �Y;e0t = �Y;e0t �Y;e0t ) follow inde-pendent GARCH pro
esses ; we in
lude a seasonal 
omponent in the GARCH pro
ess followed bynatural short-term sho
ks15The inspe
tion of the 
ross-
orrelation fun
tions between the di�erent sho
ks reveals that the sho
ks are not dependent onpast sho
ks over a lag of one day 17



� the residual sho
ks (�X;et ; �X;e0t ; �Y;et ; �Y;e0t ) are assumed to be i.i.dWe use the 4 � 1 ve
tor pro
ess �Zt = (�Xet ;�Xet 0;�Y et ;�Y et 0)0 and the 3 � 1 state ve
tor pro
ess�t = � �Xet�lX ; �Xe0t�lX ; RYt�lY �0. A few 
omments are required here. First, keeping in mind equations (10)and (11), assuming linear fun
tion fY , and making abstra
tion of the dependen
e between ( �Xet ; �Xe0t ) and(Y et ; Y e0t ) indu
ed by the terms ��Zt�1 and ��t, the model (12) implies a ve
tor autoregressive model(VAR) for the slopes and a ve
tor error-
orre
tion model (VECM) for the levels, whi
h makes sense froman e
onomi
 standpoint. Se
ond, we believe that the model (12) is suÆ
iently general to a

ount for theevolution of any pair of related 
ommodity forward 
urves, with an appropriate long-term relation fe;e0Y .However, as we 
hoose to model the pro
esses (�X;et �X;et ; �X;e0t �X;e0t ; �Y;et �Y;et ; �Y;e0t �Y;e0t ) as independentGARCH pro
esses, we ex
lude from our s
ope the relations slope/volatility (whi
h are studied by Ates andWang (2005) in the US gas market) and the e�e
t of volatility transmission between the two 
ommoditypri
es, an e�e
t whi
h was highlighted before in the literature in the 
ase of gas and oil markets (seePindy
k (2004) and Ewing et al. (2003)). Lastly, we assume a 
onstant dependen
e stru
ture betweenthe residuals (�X;et ; �X;e0t ; �Y;et ; �Y;e0t ), thus negle
ting the possible 
orrelation 
lustering (see Eydeland andWolynie
 (2003)) and the potential relations between 
orrelation and volatilities (see e.g. Goorbergh etal. (2005)).4.2 Calibration of the modelTo 
alibrate the model, we pro
eed in three steps: �rst, we �nd the lags lX and lY and we estimate �and � by a linear regression of �Zt on �Zt�1 and �t; se
ond, we apply independent GARCH models tothe residuals of this linear regression; third, we study the dependen
e stru
ture between the standardizedresiduals of the independent GARCH models. This de
omposed pro
edure, whi
h is also adopted by Ngand Pirrong (1994) and Ates and Wang (2005), was motivated by the high number of parameters to beestimated.4.2.1 Estimation of lX , lY , � and �Figure (5) represent the 
ross-
orrelations between the gas sho
ks and the state variables �t. We therefore
hoose lX = 4 and lY = 6. Tables (8)-(9) report the results of the four linear regressions. Regardingthe 
ross-energy dependen
e on past sho
ks, we �nd that the 
ausality generally runs from oil to natural18



gas and is negative16. Regarding the inter-temporal dependen
e on past sho
ks, the 
ausality runs bothways between the short-term and the long-term, is positive (resp. negative) in the dire
tion long-term ,!short-term for oil (resp. gas) and negative in the dire
tion short-term ,! long-term for both energies17.Regarding the auto-
orrelation of sho
ks, we �nd that in the short-term, oil and gas markets tend toamplify the previous move, whereas in the long-term, they are more likely to 
orre
t it.The most important results 
on
ern the rea
tion of the sho
ks to the state variables (�t). As regards theimpa
t of the slopes, we �nd that 
rude oil short-term sho
ks tend to 
orre
t the spread between gasand oil slopes and that gas long term sho
ks rea
t positively to a positive spread between gas and oilslopes, thus having an ampli�
ation e�e
t on the spread between the two 
urves. Con
erning the impa
tof the levels, we �nd that the gas short-term sho
ks rea
t negatively to an overvalued natural gas longterm pri
e18, whereas the gas long-term sho
ks 
orre
t the deviations to the long-term equilibrium on thelevels; note that the 
rude oil long-term sho
ks are not sensitive to the di�erent state variables (�t). We
on
lude that gas (resp. 
rude oil) plays the leading role in the slope (resp. long term pri
e) dis
overy.The low value of the R2 in the four regressions shows that the fore
asting power of the model is howeverrelatively low as 
on
erns daily sho
ks.

16Remember the previous remark on the negative 
ausality originating from the supply side made in se
tion 217This substitution e�e
t between short and long term sho
ks has a stabilizing impa
t on the futures pri
es18therefore there is a feedba
k e�e
t balan
ing the previous ampli�
ation e�e
t19



(a) gas slope/gas short-term sho
ks (b) residuals of the long-term relationon the levels/gas short-term sho
ks

(
) gas slope/gas long-term sho
ks (d) residuals of the long-term relationin the levels/gas long-term sho
ksFigure 5: Cross 
orrelation fun
tions between the gas sho
ks and the state variables �t with lags of 1 to 10 days; the
ross 
orrelation fun
tions with lag i (resp. �i) represent the 
orrelation between the state variables at time t and thesho
ks at time t+ i (resp. t� i)
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Estimate Std. Error t value Pr(> jtj)�X;gas �0:000250 0:000737 �0:339 0:735�1;1 0:106 0:0284 3:728 0:000200 ***�1;2 �0:208 0:0515 �4:044 0:0000549 ***�1;3 �0:198 0:0565 �3:495 0:000486 ***�1;3 �0:0304 0:00803 �3:786 0:000159 ***R2 = 2:82%Wald test for gasDF F Pr(> F )3 0.969 0.407Estimate Std. Error t value Pr(> jtj)�X;
rude 0:00167 0:000623 2:668 0:00771 *�2;1 0:0237 0:0139 1:700 0:0893 .�2;2 0:104 0:0267 3:891 0:000104 ***�2;3 �0:0824 0:0280 �2:943 0:00330 **�2;4 0:143 0:0275 5:195 2:31:10�7 ***�2;1 0:00431 0:00233 1:847 0:0649 .�2;2 �0:0114 0:00406 �2:814 0:00494 **R2 = 4:34%Wald test for 
rudeDF F Pr(> F )1 2.12 0.146Table 8: Linear regression of the natural gas (resp. 
rude oil) short-term sho
ks on (�Zt�1)1;2;3 and (�t)3 (resp.(�Zt�1)1;2;3;4 and (�t)1;2); the estimated 
oeÆ
ients, standard deviations, t-statisti
s, and two-sided p-values arereported; *** indi
ates signi�
an
e at the 0.1% level, ** at the 1% level, * at the 5% level, and : at the 10% level; theWald test for gas (resp. 
rude) tests the null hypothesis that �1;4 = �1;1 = �1;2 = 0 (resp. �2;3 = 0)21



Estimate Std. Error t value Pr(> jtj)�Y;gas 0:00229 0:000679 3:372 0:000765 ***�3;1 �0:0500 0:0127 �3:939 0:0000855 ***�3;2 �0:0525 0:0259 �2:028 0:0427 *�3;1 0:0116 0:00286 4:060 0:0000513 ***�3;2 �0:00892 0:00450 �1:983 0:0475 *�3;3 �0:0243 0:00480 �5:063 4:59:10�7 ***R2 = 2:72%Wald test for gasDF F Pr(> F )2 1.083 0.339Estimate Std. Error t value Pr(> jtj)�Y;
rude 0:00150 0:000360 4:180 0:0000307 ***�4;2 �0:105 0:0265 �3:977 0:0000729 ***�4;4 �0:0907 0:0266 �3:411 0:000664 ***R2 = 2:58%Wald test for 
rudeDF F Pr(> F )5 0.148 0.981Table 9: Linear regression of the natural gas (resp. 
rude) long-term sho
ks on (�Zt�1)1;2 and (�t) (resp. (�Zt�1)2;4); the estimated 
oeÆ
ients, standard deviations, t-statisti
s, and two-sided p-values are reported; *** indi
atessigni�
an
e at the 0.1% level, ** at the 1% level, * at the 5% level, and : at the 10% level; the Wald test for gas (resp.
rude) tests the null hypothesis that �3;3 = �3;4 = 0 (resp. �4;1 = �4;3 = �4;1 = �4;2 = �4;3 = 0)
22



4.2.2 GARCH models for the volatilitiesFor the two energies, the volatilities of the short-term and long-term sho
ks are estimated by the standarddeviation of the sho
ks within a 50-days sliding window. The obtained traje
tories are displayed on �gure(6): all sho
ks exhibit volatility 
lusters, jumps, and the natural gas short-term volatility follow a seasonalpattern, with high values in the winter (60 % in normal winters) and lower values in the summer (20 %on average). The phenomenon of sto
hasti
 volatility, observed in most 
ommodity markets, is linked tothe temporal variations of some key indi
ators of the supply 
exibility, su
h as the deviation to "normal"storage level, and the proportion of spare produ
tion/re�ning 
apa
ity. Note also that the short-termvolatility peaks 
orrespond to periods of high positive forward 
urve slopes, an observation whi
h is
onsistent with the theory of storage (Kaldor (1939)), and whi
h was also made by Ates and Wang (2005)in the US gas market. The seasonal pattern of natural gas short-term volatility 
an be explained by thefa
t that the demand is more sensitive to the temperature during the heating season and that the demandand produ
tion sho
ks have more impa
t on the pri
es during the winter, when storage is part of thesupply 
urve and the market is tight, than during the summer, when storage is part of the demand 
urveand the market is loose. The seasonal behavior of gas impli
it volatilities was already observed by Blix(2003) in the US gas market.
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(a) short-term volatilities (b) long-term volatilitiesFigure 6: Annualized short-term and long-term volatilities (in %) of the two energies estimated with a 50-days slidingwindow In this se
tion, we model the volatility pro
esses of the residuals of the four previous regressions (i.e.the pro
esses (�t) in model (12)). Box-Pier
e tests on the pro
esses (�2t ) show the heteros
edasti
ity ofthe di�erent residuals: data X2 df p-value(�X;gast )2 19:424 1 1:047:10�5(�Y;gast )2 17:276 1 3:233:10�5(�X;
rudet )2 9:619 1 0:00193(�Y;
rudet )2 26:693 1 2:385:10�7Table 10: Box-Pier
e tests on the pro
esses (�X;gast )2,(�Y;gast )2,(�X;
rudet )2, (�Y;
rudet )2, (�X;heatt )2, and (�Y;heatt )2; thetest-statisti
s, degrees of freedom of the approximate 
hi-square distribution of the test statisti
s, and p-values of thetests are reportedMoreover, �gure (6) exhibits a signi�
ant seasonal 
omponent in the natural gas short-term volatility.The following seasonal GARCH model, proposed by Diebold (2003) for the modeling of temperature
24



series, a

ounts for this phenomenon:�t = �t�t�2t+1 = a1�2t + b1�2t + (a0 +A
os(2�t=252) +Bsin(2�t=252)) (13)(�t) i:i:dNote that the volatility of volatility is itself seasonal sin
e the volatility sho
ks �2t = �2t �2t have di�erentaverage winter and summer values. This 
hara
teristi
 is 
ompatible with the observation of gas short-term volatility, whi
h mostly 
luster during the winters (see �gure (6)). This model was 
alibrated byQuasi-Maximum Likelihood on natural gas short-term residuals (�X;gast ). The log-likelihood of the modelin the 
ase of Gaussian residuals (�t) is:LL = � NXt=1 � �2t2�2t + log(�t)�� N2 log(2�)The 
alibration of model (13) (available on request) reveals that the 
oeÆ
ient A is not signi�
ant. Theestimation of the model imposing A = 0 is provided in Table (11). Table (12) reports the results of theEstimate Std. Error t value Pr(> jtj)a1 0:155 0:0108 14:377 < 2:10�16 ***b1 0:752 0:0367 20:528 < 2:10�16 ***a0 0:0000884 0:0000228 3:883 0:000103 ***B �0:0000491 0:0000152 �3:234 0:00122 **Table 11: Quasi-Maximum-Likelihood estimation of a seasonal GARCH model on (�X;gast ); the estimated 
oeÆ
ients,standard deviations, t-statisti
s, and two-sided p-values are reportedJarque-Bera (resp. Box-Pier
e) tests on the residuals (resp. squared residuals) of the seasonal GARCHmodel. The Jarque-Bera tests allow us to reje
t the hypothesis of Gaussian residuals. By 
ontrast, we
annot reje
t the hypothesis of independen
e for the squared residuals, whi
h is an indi
ation of the validityof the model. Figure (7) plots the traje
tories of (�X;gast )2 together with the varian
e (�t)2 predi
ted bythe seasonal GARCH models and the long-term seasonal varian
e fun
tions a0 +Bsin(2�t=252).
25



Jarque-Beradata X2 df p-value�X;gast 2354:378 2 2:2:10�16Box-Pier
edata X2 df p-value(�X;gast )2 0:0069 1 0:934Table 12: Jarque-Bera and Box-Pier
e tests on the residuals of the seasonal GARCH model for natural gas; the teststatisti
s, degrees of freedom, and p-values of the tests are reportedWe model the other series by 
lassi
al GARCH models, whose implementation is not reported here.
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Figure 7: Traje
tories of (�X;gast )2 (bla
k), varian
e �2t predi
ted by a seasonal GARCH model (red), and long-termvarian
e 11�a1�b1 (a0 +Bsin(2�t=252)) (green)4.2.3 Dependen
e stru
ture of the standardized 
o-movementsWe model the dependen
e stru
ture of the residuals (�) using the 
opula representation:P(�X;et � z1; �X;e0t � z2; �Y;et � z3; �Y;e0t � z4) = C(FX;e(z1); FX;e0 (z2); F Y;e(z3); F Y;e0(z4)) (14)where the 
opula fun
tion C is de�ned in [0; 1℄4 with values in [0; 1℄, and (FX;e; FX;e0 ; F Y;e; F Y;e0) denotethe marginal distributions of the residuals (�X;e; �X;e0 ; �Y;e; �Y;e0). We will use here the Gaussian 
opulade�ned by: C(u1; u2; u3; u4) = �4�(��1(u1);��1(u2);��1(u3);��1(u4)) (15)where �4� is a 4-variate normal distribution of 
orrelation matrix �, and ��1 is the inverse of the univariatestandard normal distribution. As explained in Joe and Xu (1996), the 
alibration of the model (14) isdone in two steps:- we �rst �t the marginal densities (fX;e; fX;e0 ; fY;e; fY;e0) of the di�erent sho
ks using the Skewed Gen-eralized Error Distribution (SGED); the obtained parameters and goodness-of-�t results, whi
h are notreported here, indi
ate the relevan
e of this representation- on
e the marginal distributions are determined, the 
orrelation matrix � is estimated by 
omputing the
27



empiri
al Kendall's �19 for ea
h pair, whi
h is linked to the 
orrelation matrix of the Gaussian 
opulathrough the relation � = 2� ar
sin(�) (see Lindskog et al. (2003))The estimates of matrix 
orrelations � for the pair gas/
rude oil are reported on tables (13). We notethat all 
orrelations are signi�
antly positive.short-term gas short-term 
rude long-term gas long-term 
rudeshort-term gas 1 0:282 0:623 0:294short-term 
rude 0:282 1 0:300 0:470long-term gas 0:623 0:300 1 0:380long-term 
rude 0:294 0:470 0:380 1Table 13: Estimation of the 
orrelation matrix of the Gaussian 
opula4.3 Evolution of the 
orre
tion me
hanismsTable (14) reports the separate estimations of matrix � on the periods January 1999-De
ember 2001,January 2002-De
ember 2003 and January 2004-July 2005, and 
ompares them with the global estimatoron the whole period January 1999-July 2005: we observe �rst that the signs of the 
oeÆ
ients �1;3 and�3;3, expressing the 
orre
tion of the deviations to the long-term relation between gas and oil levels,have been stable throughout the period under study; 
onversely, the pairs (�2;1;�2;2) and (�3;1;�3;2),expressing the sensitivity to the gas and oil slopes have had a di�erent behavior on the most re
ent period,the former swit
hing signs, and the latter be
oming non-signi�
ant.

19the empiri
al Kendall's � expressing dependan
e between two samples (Xt) and (Yt) is 
omputed by �(X;Y ) =1C2n P1�i1�i2�N sign(Xi1 �Xi2)(Yi1 �Xi2) 28



Global Jan 1999-De
 2001 Jan 2002-De
 2003 Jan 2004-Jul 2005�1;3 �0:0304��� �0:0264�� �0:03510:103 �0:0835:�2;1 0:00431: 0:00657� 0:0103: �0:00921:�2;2 �0:0112�� �0:0167�� �0:0319�� 0:006480:325�3;1 0:0116��� 0:0150��� 0:0127: 0:001130:871�3;2 �0:00892� �0:009480:157 �0:0203: 0:004360:571�3;3 �0:0243��� �0:0241��� �0:0303� �0:0611�Table 14: Estimation of the error-
orre
tion parameters on the three periods; *** indi
ates signi�
an
e at the 0.1%level, ** at the 1% level, * at the 5% level, and : at the 10% level; p-values above 10% are reported below the estimatedparameters4.4 Evolution of the 
orrelationsThe obje
tive here is to study the stability of the dependen
e stru
ture whi
h was found between theforward 
urves 
o-movements. Figure (8) represents the temporal evolution of the 
orrelation between gasand oil short-term (resp. long-term) sho
ks derived from Kendall's �20 (with a one-year sliding window).Both 
orrelations display an upward trend on the period. Possible explanations for this observation arethe 
orrelation indu
ed by the growing investment of hedge funds in the 
ommodity asset 
lass and thefa
t that, in 
ommodity markets, in 
ontrast to equity markets, 
orrelation is generally bigger whenpri
es are rising. To a

ount for this trend in the dependen
e stru
ture, we have estimated (followingRo
kinger and Jondeau (2001)) a bi-variate normal 
opula model with a quadrati
 trend in the 
orrelation
oeÆ
ient21 for the two pairs gas short-term sho
ks/oil short-term sho
ks and gas long-term sho
ks/oillong-term sho
ks: Ct(u1; u2) = �2�t(��1(u1);��1(u2)) (16)�t = a+ bt2 (17)where �2� is the bivariate normal distribution with 
orrelation 
oeÆ
ient �, and a, b are unknown pa-rameters des
ribing the temporal evolution of the 
orrelation 
oeÆ
ient. The log-likelihood of the 
opula20� = 2� ar
sin(�)21The term expressing linear dependen
e with respe
t to time is not in
luded here in the model as it was not found signi�
ant29



(a) short-term gas/short-term 
rude (b) long-term gas/long-term 
rudeFigure 8: sin(�2 �) as a fun
tion of time (with a one-year sliding window) and quadrati
 trend a + bt2 estimated bymaximum-likelihoodmodel (16)-(17) is:LL(�; F e; F e0) = NXt=1 ln h
t(F e(�et ); F e0(�e0t ))i+ NXt=1 �ln [fe(�et )℄ + ln hfe0(�e0t )i� (18)In (18), (fe; fe0) are the univariate densities, (F e; F e0) are the univariate 
umulative distributions,(�et )1�t�N are the observations for energy e, and 
t is the density of the bi-variate normal 
opula of
orrelation 
oeÆ
ient �t = a+ bt2:
t(u1; u2) = �2Ct�u1�u2= ��t (��1(u1);��1(u2))�(��1(u1))�(��1(u2))where ��(x; y) = 12�p1��2 exp�� 12p1��2 �x2 + y2 � 2�xy�� is the bi-variate normal density for 
orrela-tion 
oeÆ
ient �, and � is the density of the N(0; 1) distribution. The parameters a and b maximizing theterm PNt=1 ln h
t(F e(�et ); F e0(�e0t ))i in (18) are reported on Table (15) and the obtained quadrati
 trendplotted in Figure (8).
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gas/
rude short-term sho
ks Estimate Std. Error t value Pr(> jtj)a 0:176 0:0337 5:29 1:25:10�7 ***b 1:12:10�7 2:64:10�8 4:25 2:16:10�5 ***gas/
rude long-term sho
ks Estimate Std. Error t value Pr(> jtj)a 0:235 0:0321 7:33 2:34:10�13 ***b 1:379:10�7 2:19:10�8 6:30 3:06:10�10 ***Table 15: Maximum-likelihood estimation of the quadrati
 trend in the 
orrelation between oil and gas5 Con
lusionThis paper has presented a new dependen
e model for 
ommodity forward 
urves. Like popular models onsingle 
ommodity forward 
urves, it de
omposes the forward 
urve moves into a short-term and a long-termsho
ks, with sto
hasti
 and possibly seasonal volatilities. The 
orrelation between the sho
ks of the two
urves is 
aptured through a non-Gaussian dependen
e stru
ture. The originality of the model is that, inaddition to this lo
al dependen
e stru
ture, it a

ounts for the long-term relations between the 
ommodityforward pri
es through an error-
orre
tion term in the risk-premia of the forward pri
e returns. The long-term relations are based on the state variables des
ribing the shape of a forward 
urve under the two-fa
tormodel, namely the slope and level. Our 
urrent resear
h 
on
erns the modeling of sto
hasti
 dependen
estru
ture, and the impli
ations of the model for multi-
ommodity asset pri
ing, risk measurement, andportfolio optimization. As far as asset pri
ing is 
on
erned, Duan and Pliska (2004) have shown that the
ombination of 
ointegration and sto
hasti
 volatility has an impa
t on asset pri
es: thus the model wouldlead to di�erent pri
ing results than standard lo
al dependen
e models without risk-premia. Regardingrisk management, the model, be
ause it 
aptures the long-term relations between two 
urves, allows oneto realisti
ally simulate portfolios' Earning-at-Risk on a long-term perspe
tive. With respe
t to portfoliooptimization, our error-
orre
tion model allows the portfolio manager to fore
ast the relative evolutionsof the two 
onsidered forward 
urves given their initial slopes and levels, a property whi
h has numerousimpli
ations; hedge funds will be provided with dire
tional strategies based on long/short positions on31



the two 
urves while physi
al portfolio managers will have a way to 
hoose the best moments to lo
k inthe margin of their assets with futures 
ontra
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