#### Workshop "Wind Power and Market design" -University Paris XI

# Portfolio analysis and wind power

Fabien Roques, Marcelo Saguan, Céline Hiroux, and Carlo Obersteiner Fontenay-aux-roses 7 June 2008

## Outline

### • Wind power variability and geographic diversity

- Time scale: Hourly variability, seasonality, yearly variability
- Unit commitment/balancing effects/Capacity credit

#### Applying Mean Variance Portfolio theory to wind power

- Physical electricity output vs. financial analysis
- Social planner (National or EU level) vs. investor project mix

#### • Data and preliminary results

– Case study for Austria, Germany, Spain and Denmark

#### • Next steps...

 Taking into account system (transmission constraints) and interactions between load and wind output

# Introduction: EU wind resource and investment planning



| Sheltere          | Sheltered terrain <sup>2</sup> |            | Open plain <sup>3</sup> |            | At a sea coast <sup>4</sup> |                | Open sea <sup>5</sup> |            | Hills and ridges <sup>6</sup> |  |
|-------------------|--------------------------------|------------|-------------------------|------------|-----------------------------|----------------|-----------------------|------------|-------------------------------|--|
| m s <sup>-1</sup> | $Wm^{-2}$                      | $m s^{-1}$ | $Wm^{-2}$               | $m s^{-1}$ | $Wm^{-2}$                   | ${ m ms^{-1}}$ | $Wm^{-2}$             | $m s^{-1}$ | $Wm^{-2}$                     |  |
| > 6.0             | > 250                          | > 7.5      | > 500                   | > 8.5      | > 700                       | > 9.0          | > 800                 | > 11.5     | > 1800                        |  |
| 5.0-6.0           | 150-250                        | 6.5-7.5    | 300-500                 | 7.0-8.5    | 400-700                     | 8.0-9.0        | 600-800               | 10.0-11.5  | 1200-1800                     |  |
| 4.5-5.0           | 100-150                        | 5.5-6.5    | 200-300                 | 6.0-7.0    | 250-400                     | 7.0-8.0        | 400-600               | 8.5-10.0   | 700-1200                      |  |
| 3.5-4.5           | 50-100                         | 4.5-5.5    | 100-200                 | 5.0-6.0    | 150-250                     | 5.5-7.0        | 200-400               | 7.0- 8.5   | 400- 700                      |  |
| < 3.5             | < 50                           | < 4.5      | < 100                   | < 5.0      | < 150                       | < 5.5          | < 200                 | < 7.0      | < 400                         |  |

- National focus on sites with best wind resource
- As penetration increases, investment planning needs to take into account:
  - wind variability and interaction with other technologies (Neuhoff et al., 2008)
  - Integration into power network
  - Transmission constraints, particularly at EU level
  - Correlation between sites to diversify risk => portfolio approach

## Wind power output correlation decreases with distance between sites



UK wind turbine output correlation decreases by about 0.1 every 100/200 km.

# Portfolio analysis of wind power development

- Wind power variability and geographic diversity
  - Diversify *physical output risk*
  - Diversify *financial risk exposure* more complex: related to local market (balancing mechanism) and regulatory (support scheme: feed in tariff or certificates) factors.
  - => Focus on physical output risk
- **Geographic dispersion at which level**? Portfolio approach can help to reduce variability and risk:
  - At the **project** level, within a company's assets portfolio
  - At the **country** level, within a national network system
  - At the **EU** level, countries have particular wind patterns

## Wind capacity additions in the EU



- **Static** perspective: what are the optimal country portfolios?
- **Dynamic** perspective: Are there appropriate incentives for wind power development across the EU countries?

# Portfolio analysis of wind power development (2)

#### • Diversification over which time scale?

- Hourly variability, seasonality, yearly variability
- Unit commitment/balancing effects/Capacity credit
- Support schemes introduce an additional dimension (Feed in tariffs vs. green certificates, etc.)

#### • Type of analysis is key to define time scale:

- 1. Investment planning from a "social" perspective: Optimal portfolios based on hourly consideration on national level have lower risk for unit commitment/balancing or capacity credit.
- $\Rightarrow$  detailed modeling of transmission capacity, market integration balancing and day ahead, etc.
- 2. Investment projects from an investor perspective: construct portfolios that minimize quantity risk / maximize return.
- $\Rightarrow$  Yearly analysis for long term contracts; monthly analysis for medium term contracts and hourly analysis for Day ahead/balancing trade.

## Quantifying the optimal degree of diversity

- The extent to which diversity is to be pursued depends on the balance between the *extra costs* and the degree of *risk reduction* achieved.
- Various methods have been developed to quantify and optimise the diversity of a portfolio of assets:

#### - Value at Risk

• The Value at Risk (VAR) calculates the maximum loss expected (or worst case scenario) on an investment, over a given time period and given a specified degree of confidence.

#### - Markowitz Mean Variance Portfolio theory

• The Mean-variance portfolio theory (MVP) defines efficient portfolios as the ones which have the smallest attainable portfolio risk for a given level of expected return (or the largest expected return for a given level of risk).

## The portfolio effect – The case of a two-asset portfolio

- For two assets (X1, X2) with respective returns (r1, r2) and standard deviation (σ<sub>1</sub>, σ<sub>2</sub>):
  - Portfolio return:
  - Portfolio variance:
- Efficiency frontier:



$$\sigma_{p} = \sqrt{X_{1}^{2}\sigma_{1}^{2} + X_{2}^{2}\sigma_{2}^{2} + 2X_{1}X_{2}\rho_{12}\sigma_{1}\sigma_{2}}$$





Some amount of diversification occurs whenever the returns of two (or more) securities are less than perfectly correlated (i.e.  $\rho < 1.0$ )

## **Portfolio theory efficient frontier**



- The efficient frontier for a portfolio of two risky assets.
- MVP theory does not prescribe a single optimal portfolio combination, but a **range of efficient choices**.
- Investors will choose a risk-return combination based on their **own preferences and risk aversion**.

## Literature review - Wind power and Portfolio Analysis

- Portfolio analysis that consider the effect of wind power in a conventional electricity generation portfolio (gas, coal, nuclear, etc.)
  - DeLaquil P. et al. (2005), McLoughlin and Bazilian (2006), Kienzle et al (2007), Awerbuch and Berger (2003), Twomey (2005), etc...

#### • Geographical or spatial effects of wind power

- Correlation analysis: Sinden (2007), Hirst (2002), Giebel (2000), etc.
- Porfolio analysis:
  - Drake and Hubacek (2007)
  - Kyle Datta E. and Hansen L. (2005)
  - Hansen L. (2005)
- Other effects (e.g. power network, demand)
  - Drake and Hubacek (2007) take into account transmission losses.
  - Sinden (2007) takes into account the correlation between wind power and demand

## Optimisation of EU power generation mix – Awerbuch and Yang (2005)



2020 EU Baseline Portfolio Optimization (CO2=E35/tonne) – Source: Awerbuch and Ynag (2005)

#### 2020 EU Baseline Portfolio Optimization indicates that renewables can reduce risk and cost

# Applying portfolio theory to geographical dispersion

- The key point: wind speed correlations between different wind farms
  - Focus can be on *physical output risk; or*
  - on investment project financial risk exposure
- Holding period return defined as in finance:
  - Physical output: (Pt Pt-1)/Pt
  - Financial return: project NPV, or variation of cash flows/generation cost

#### • Constructing the efficiency frontier:

- Data on average wind power generation, standard deviations and correlation coefficients
- Optimization model to compute minimum standard deviation (portfolio risk) that exists for any given rate of average power generation (portfolio return) that is input into the model

## The database

#### • Type of data:

- Real production data (Hirst 2002)
- Simulated data from wind speed data (Hansen 2005, Kyle Datta and Hansen 2005, Drake and Hubacek 2007, Sinden 2007)

#### • Data resolution:

- Hourly (Drake and Hubacek (2007) and Sinden (2007))
- $\Rightarrow$  How many years are necessary to have reliable data?
- $\Rightarrow$  How does « geographical aggregation » of data impact results?
- $\Rightarrow$  Which data resolution/filtering for what type of analysis?

#### • Our database: aggregated hourly wind production data:

- Spain (from 2002 to 2007)
- Germany by TSO zone (from 2006 to 2008)
- Austria (from 2006 to 2007)
- Denmark by zone (from 2000 to 2008)

#### • We are waiting for:

- French production data (from 2006 to 2007)
- Wind speed data for several European Countries

## **Preliminary results**

- Results based on hourly wind production data (2006 –2007) for Spain, Germany, Austria, and Denmark
- Outputs:
  - Wind Capacity Factor variability (Sinden 2007)
  - Interaction of wind production and demand (Sinden 2007)

#### - Portfolio Analysis

- Wind output
  - Hourly analysis
  - Monthly analysis
- Wind output and demand

## Intern-annual variability Average capacity factor



- Capacity factors computed dividing hourly wind power production by installed capacity
- Assumption that installed capacity changes linearly during the year

## Intern-annual variability Standard deviation of capacity factor



- Hourly standard deviation varies significantly year to year...
- Smaller countries have less dispersed wind farms => higher standard deviation



- Patterns significantly different across countries
- Spain has much less seasonal variability

## Wind Power and demand Monthly comparison



## Wind Power and demand Hourly comparison





## Portfolio analysis (à la Hansen 2005) Wind power only (Hourly analysis)

#### **Correlations analysis**

| Correlation |           |           |           |           |  |  |
|-------------|-----------|-----------|-----------|-----------|--|--|
|             | Spain     | Germany   | Austria   | Denmark   |  |  |
| Spain       | 1,0000000 | 0,0970128 | 0,1516223 | 0,0235352 |  |  |
| Germany     |           | 1,000000  | 0,2473075 | 0,7092889 |  |  |
| Austria     |           |           | 1,000000  | 0,1045161 |  |  |
| Denmark     |           |           |           | 1,000000  |  |  |

- Social planner optimisation, assuming:
  - only four countries
  - no physical constraints (integrated markets)
  - no limit in wind potential
  - that capacity factors by country are geographically consistent

#### **Optimal wind portfolios for Spain and Denmark** (weakest correlation = 0.0235) – Only Wind Power



### **Optimal portfolios for Spain-Germany-Austria-Denmark**

|        |       |              |                | Weight  |                |
|--------|-------|--------------|----------------|---------|----------------|
| Mean   | Risk  | Weight Spain | Weight Germany | Austria | Weight Denmark |
| 0,2233 | 0,107 | 53,99%       | 20,99%         | 14,87%  | 10,15%         |
| 0,2254 | 0,108 | 54,79%       | 16,11%         | 15,64%  | 13,46%         |
| 0,2274 | 0,108 | 55,58%       | 11,22%         | 16,42%  | 16,78%         |
| 0,2295 | 0,109 | 56,37%       | 6,34%          | 17,20%  | 20,09%         |
| 0,2316 | 0,11  | 57,16%       | 1,46%          | 17,98%  | 23,41%         |
| 0,2337 | 0,115 | 49,46%       | 0,00%          | 14,84%  | 35,71%         |
| 0,2358 | 0,131 | 38,14%       | 0,00%          | 10,04%  | 51,82%         |
| 0,2378 | 0,156 | 26,83%       | 0,00%          | 5,24%   | 67,94%         |
| 0,2399 | 0,185 | 15,51%       | 0,00%          | 0,44%   | 84,05%         |
| 0,242  | 0,218 | 0,00%        | 0,00%          | 0,00%   | 100,00%        |

## Efficient frontier for wind portfolios in Spain-Germany-Austria-Denmark



- Current portfolio is far from efficient frontier
- Things will improve in the future as weight of Germany decreases

# Wind Power and demand "Net demand" variability

#### • Correlations between

- Demands
- Wind power productions
- Net demands?

#### • Methodology:

- To construct data series for hourly wind capacity factor by country "i" (this capacity factor is the production for 1 MW installed in each country assuming that these aggregated capacity factors are representative for the whole country) --> WCFi
- To construct a data series for hourly total demand factor (this represents hourly demand in terms of global installed capacity or peak load) --> TDF
- To construct data series for hourly "needed generation capacity" as NCi = WCFi – TDF. Then, computing efficient frontier for NCi and determine "efficient portfolio"

# Wind Power and demand « Net demand » variability



- This "net demand approach" is not so realistic (because we are not considering wind potential, transmission constraints and lack of market integration).
- It could become more interesting if we can include these issues.

# **Summary of results**



 Correlation between each country wind capacity factor Spain Germany Austria Denmark and total demand: 0,04770768 0,13084032 0,07255191 0,15446145

# Conclusions

#### • As wind power penetration increases:

- Focus shifts from best sites towards optimization of utilities / countries portfolios
- Correlation between wind sites is key, but also correlation with load and other power production technologies
- Portfolio theory is a powerful tool to optimize wind portfolios at different geographical levels...
  - Risk-reward tradeoffs of utilities investments
  - Social planners for deployment support policy
- ...But realistic analysis requires to take into account dispatching and transmission constraints...

# References

- Awerbuch Sh., Berger M., (2003), "Applying portfolio theory to EU electricity planning and policy-making"
- Bolinger M., Wiser R., Golove W., (2002) "Quantifying the value that wind power provides as a hedge against volatile natural gas prices", LBNL
- DeLaquil P., Awerbuch Sh., Stroup K., (2005) "A portfolio risk analysis of electricity supply options in the Commonwealth of Virginia"
- Drake B., Hubacek K., (2007), "What to expect from a grater geographic dispersion of wind farms? a risk portfolio approach", Energy Policy 35 (2007) 3999-4008
- Dunlop J., (2004), "Modern Portfolio Theory Meets wind farms", The journal of private equity, spring 2004.
- Giebel Gregor von (2000) "On the benefits of distributed generation of wind energy in Europe", PhD dissertation
- Hansen L. (2005), "Can wind be a "firm" resource?", Duke environmental law & policy forum.
- Hirst (2002)
- Kienzle F. et all (2007), "Efficient electricity production portfolios taking into account physical boundaries",
- Kyle Datta E. and Hansen L. (2005), "New frontier in Utility Valuation of Renewable Resources"
- McLoughlin E., Bazilian M., (2006), "Application of Portfolio Analysis to the Irish Electricity Generating Mix in 2020", Working Paper, sustainable energy Ireland.
- Milligan (2000), "Factors Relevant to Incorporating Wind Power Plants into the Generating Mix in Restructured Electricity Markets"
- Milligan M. Artig R., (1998), "Reliability Benefits of Dispersed Wind Resource Development"
- Renewables Advisory Board (2006), "Renewable Electricity Generation"
- Sinden G., (2007), "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand", Energy Policy 35 (2007) 112-127

### Thank you for your attention!

### **Comments much welcome!**

fabien.roques@gmail.com marcelo.saguan@u-psud.fr celine.hiroux@u-psud.fr obersteiner@eeg.tuwien.ac.at

# **Next steps**

- Data
  - Type of data (we will have more real wind power generation)
  - Scaling data?
  - What to do with data for different years ?
    - Construct probability distribution and simulate wind power generation?
  - Is it possible to combine different type of data (actual generation and simulated generation with wind speed)?
    - Under which assumptions
  - Costs & support scheme Data  $\rightarrow$  \$ porfolio analysis
- Computations to do
  - Scenarios

# With average monthly data – wind only



- Same mean but different variance changes optimal portfolios
- More comment?

# With average monthly data – wind only



- Same mean but different variance changes optimal portfolios
- More comment?

| Mean   | Mean Risk Weight |        | Weight Germany | Weight Austria | Weight Denmark |  |
|--------|------------------|--------|----------------|----------------|----------------|--|
|        |                  |        |                |                |                |  |
| 0,2284 | 0,054            | 63,34% | 2,96%          | 33,00%         | 0,71%          |  |
|        |                  |        |                |                |                |  |
| 0,23   | 0,054            | 63,82% | 0,00%          | 31,44%         | 4,75%          |  |
|        |                  |        |                |                |                |  |
| 0,2315 | 0,055            | 65,53% | 0,00%          | 17,62%         | 16,85%         |  |
|        |                  |        |                |                |                |  |
| 0,233  | 0,057            | 67,24% | 0,00%          | 3,80%          | 28,96%         |  |
|        |                  |        |                |                |                |  |
| 0,2345 | 0,061            | 59,13% | 0,00%          | 0,00%          | 40,87%         |  |
|        |                  |        |                |                |                |  |
| 0,236  | 0,067            | 47,31% | 0,00%          | 0,00%          | 52,69%         |  |
|        |                  |        |                |                |                |  |
| 0,2376 | 0,074            | 35,48% | 0,00%          | 0,00%          | 64,52%         |  |
|        |                  |        |                |                |                |  |
| 0,2391 | 0,082            | 23,65% | 0,00%          | 0,00%          | 76,35%         |  |
|        |                  |        |                |                |                |  |
| 0,2406 | 0,091            | 11,83% | 0,00%          | 0,00%          | 88,17%         |  |
|        |                  |        |                |                |                |  |
| 0,2421 | 0,1              | 0,00%  | 0,00%          | 0,00%          | 100,00%        |  |











# **Summary of results**

|                                  | Spain  | Germany | Austria | Denmark |
|----------------------------------|--------|---------|---------|---------|
|                                  |        |         |         |         |
| Min Return/Risk (only wind)      | 53,99% | 20,99%  | 14,87%  | 10,15%  |
|                                  |        |         |         |         |
| Medium Return&Risk (only wind)   | 57,16% | 1,46%   | 17,98%  | 23,41%  |
|                                  |        |         |         |         |
| Max Return/Risk (only wind)      | 0,00%  | 0,00%   | 0,00%   | 100,00% |
|                                  |        |         |         |         |
| Min Return/Risk (wind&demand)    | 49,04% | 19,30%  | 15,43%  | 16,23%  |
|                                  |        |         |         |         |
|                                  |        |         |         |         |
|                                  |        |         |         |         |
| Medium Return&Risk (wind&demand) | 51,97% | 1,19%   | 18,31%  | 28,52%  |
|                                  |        |         |         |         |
| Max Return/Risk (wind&demand)    | 0,00%  | 0,00%   | 0,00%   | 100,00% |

• Comment here



## Efficient frontier for wind portfolios in Spain-Germany-Austria-Denmark

