IBERDROLA's experience in market participation of wind parks

Wind Power and Market Design University Paris XI

Juan Rivier Abbad Paris, 6th of June 2008

Contents

Introduction

- Spanish wind story
- > Technical & economical integration
- Reasons for the Spanish wind success story
- Conclusions

Introduction

- Spain liberalized its electrical system back in 1998
- Spanish wholesale market design
 - 24 hour day ahead market
 - Succession of shorter term markets and ancillary services
 - Transparent: rules are published and followed
- Renewable Energy Sources (RES)
 - Feed-in-Tariff (FiT)
 - Wind has been the most successful technology
 - 15 GW now (3.5 GW during 2007)
 - 20 GW by 2010 and 40 GW by 2020 ?
- Achieving such penetration wouldn't have possible without a good integration in the system
 - 2004: integration of wind parks into the electricity wholesale market

Spanish wind story

Some data

- Spanish peak demand: 44.88 GW
- Energy production 2007: 260.84 TWh
- Wind energy production 2007: **26.67 TWh** (10%)
- Interconnection capacity: ~2.5 GW (~6% of peak demand)
- Historic instantaneous peak wind production: 10,880 MW (18th April 2008 at 16.50 – 33,500 MW of demand – 32% of instantaneous penetration)

• Royal Decree 2818/1998

- Feed-in-Tariff
 - Technology specific
- Specific technical conditions

• Royal Decree 436/2004

- Market option: market price + premium
 - Forecasting obligation
 - First measure to better integrate wind in the market

• Royal Decree 661/2007

- Current regulation
- Market + premium with a cap and a floor

Page 7 / 18

First main change: Royal Decree 436/2004

- Technical requirements
 - Mandatory forecast of output (> 10MW)
 - 1 hour ahead of each intraday gate closure
 - Imbalance
 - 20% dead band & 10% average estimated system total cost (€/kWh) per deviated kWh.
 - Modulated reactive power generation
 - Modulation from inductive 0.95 power factor to capacitive 0.95 based on 3 scenarios (low, medium and peak load) with economic incentives between -4% to +8%.
 - Dip ride through capability
 - No mandatory obligation
 - Economically incentivized

• Royal Decree 436/2004 (ii)

- Economic novelties: alternative to pure FiT
 - Integration into the wholesale market
 - Market income
 - Participation in all markets and servicess
 - Exposure to all the economic signals, including full imbalance costs
 - 2 exceptions:
 - No payment for secondary reserve band
 - No voltage regulation, power factor regulation
 - Possibility of imbalance aggregation
 - Additional premium for each kWh produced

90% of wind parks switched to the market option

Second change: Royal Decree 661/2007

- Technical novelties
 - Mandatory connection to delegate dispatch centres (DDC)
 - Each DDC is connected to the SO Renewable Control Centre CECRE
 - Sends real time information about production
 - Receives real time orders from SO
 - Curtailments
 - Reactive set points
 - Capacity for the SO to set specific reactive power set point
 - Non-controllable generators are forbidden from participating in ancillary services
 - Mandatory dip ride through capability for all wind parks (old & new)
 - No more dead band for imbalances for fixed tariff option

• Royal Decree 661/2007 (ii)

- Economic novelties
 - Cap & floor to overall income of wind generators

• 10 years ago

- Several GW of wind was "unrealistic"
- Now
 - 15 GW without too much problems

Future

• 40GW by 2020 doesn't seem unrealistic anymore

 Strong commitment in integrating both technically and economically RES into the system from

- Regulator
- SO
- RES operators

IBERDROLA RENOVABLES

System control

- High wind penetration levels
 - Lots of dispersed & uncontrollable generating units
- Iberdrola's vision
 - Iberdrola has been the first big utility to bet on wind
 - Same philosophy than for the rest of generation
 - Development of Control Centre for Renewable
 Energy Sources: CORE
 - Monitoring in real time > 5,000 wind turbines
 - > 300 variables per turbine
 - Capable of operating wind turbines
 - Both active and reactive power

IBERDROLA RENOVABLES

System control

- This centre is at the origin of the Spanish SO RES control centre (CECRE)
 - It is now mandatory to any RES to be connected to the CECRE through a Delegate Dispatch Centre
- SO is now in control of RES facilities
 - Real time knowledge of production
 - Capacity to curtail what is needed in a practical way (talking about thousands of small generators)
- Crucial for reaching current wind penetration
 - Gives confidence to SO of being in control

Voltage control

- Power factor = 1
- Power factor table (0.95 ind. to 0.95 cap.)
- Capacity of the SO to set specific points
- Future: voltage set points ?

Dip-ride-through capability

- Mandatory tripping at 85%
- Economic incentive to dip-ride-trough capability
- Mandatory dip-ride-through capability

This has been the reason for wind curtailments

Page 14 / 18

Intermittency

- System has to adapt to variability of the output
 - Dispatch problems & higher costs
- If future production is not known: technical problem
- If production variability is known: economical problem

Forecasting is the solution

- Market integration and use of existing market mechanisms to solve imbalances
 - "Reasonable" rules are needed.

Next steps

- Today wind is still considered non-controllable generation
- Forbiden from providing ancillary services
- This is an economical problem, not a technical one
 - Wind can provide such services
 - There is a lack of economic incentives to do so
- In the future, with real high penetration level
 - Wind will have to provide all system ancillary services
 - Regulation has to change to assume and economically incentivize such participation

Reasons for success story

- Political will, with wide social support
 - 85% dependency on energy imports
 - Scenario with low energy prices
- Regional and local authorities involvement in wind deployment
 - Minimizes NIMBY effect
- Wind industry development at the same time
- Big utilities involvement
 - Highly concentrated wind sector, with high professionalization of wind producers

Reasons for success story

Stable and almost risk free support mechanism

- FiT has been a good choice
- Transparency of the electricity market
 - Independent bodies for SO and MO
 - Cost public and audited
- Innovative solutions for technical and economical integration
 - Market integration is a key factor to transmit and receive all the economic signals to optimize the power systems operation