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ABSTRACT

In this paper we use annual data on 92 Frenchrieiggtdistribution units (2003-2005) to

estimate a benchmarking model that includes a tyual service indicator (number of

interruptions). Our methodology involves the estilon of input distance functions using

stochastic frontier analysis (SFA) and data envelut analysis (DEA) techniques.

The

empirical results indicate that the inclusion oé tuality variable has no significant effect

upon mean technical efficiency scores, and the nsfagow price of one interruption is

approximately ten Euros.
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1. INTRODUCTION

The electricity supply industries in many countrie@ve undergone profound changes in
recent decadé's.In a number of these countries, market mechaniswe been introduced in

the generation and supply activities.

Over Europe, member states moves on the path efalibation at different paces. To
illustrate these differences one may mention asxample France and Germany. In Germany
the market has been entirely open to all custonmelspendently of their consumption level
since 1998. In France, the liberalisation processtesl in 2000. It was undertaken
progressively step by step. In the first stage liberalisation process only concerned the
electro-intensive customers. In the current finags, which started on July 2007, the whole

French market is fully opened to competition.

In this liberalisation process, the network acidgt(the so-called wires businesses) given
their natural monopoly specificity require a regigia framework, which is either defined by

the industry itself (self regulation) or by an ipéadent regulation authority. The German
experience illustrated how self-regulation appedcetie inappropriate to guarantee a same

level playing field among the market players of @erman electricity markets.

Independent regulatory authorities, which wereugetin the different European states, are
thus required to monitor the wires businesses opefay grid operators (Distribution System
Operator and). They ensure that all market playave a fair access to an essential facility at

a fair access charge.

The role of these regulation authorities is thuprevent a regulated grid operator from the
realisation of any economic profit. To ensure ttaisk, he usually sets a tariff, the access

charge, which allows the grid operator to fullyaeer their total costs.

Meanwhile this regulation scheme does not provide gperators incentives to achieve cost
efficiency as they may overinvest in capital, afeefpointed out by Averch-Johnson (1962).
To avoid the emergence of this effect, regulat@s ly on a specific regulation scheme,
called incentive regulation. In such scheme, thgulegor defines productivity objectives,
which should be achieved by the grid operator. hSefforts are costly for DSO, they will

undertake them whether they are rewarded for them.

! For example, see Newberry (2000).



Given that a regulator generally has some unceéytaggarding the efficient level of a DSO'’s
costs, the grid operator can be rewarded for tHertetoeyond the efficient level.
Benchmarking thus may appear as a useful tool feegulator to use in assessing the
efficiency and the performance of a DSOA robust benchmarking model can help the
industry regulators to determine the relative éfficy of different DSOs and to set their
reasonable targets in term of cost efficiency. tBese methods have a caveat, since they can
create incentives for cost reductions which mayehawv impact on the quality of service. A
challenge for the regulatory body is to find a abié method to ensure that cost reductions do

not have an adverse effect on the quality of a@ttrdistribution.

For that purpose, regulators normally rely on taaifd quality incentive schem&sUsually

these two schemes are separated. The tariff ineestheme, generally involving a revenue-
cap or a price-cap regulation, often makes useba&ahmarking model that seeks to identify
the efficient level of costs for each operator.e uality incentive scheme on the other hand
generally involves a reward/penalty mechanism thdiased on pre-specified performance

levels in terms of acceptable outages (frequendyoamiuration)’

An alternative approach could be to include the liyuaaspect into the efficiency
benchmarking. By doing so, the efficiency requieamalso includes incentives for quality
improvements. The purpose of this study is thusestigate the feasibility of combining
both incentive schemes into one. In particular, wweestigate alternative efficiency
measurement models that also incorporate qualigsores that could then give a good idea
of the real efficiency of a distribution companpat can take into account its structural
constraints and public service obligations.

Up till now, most widely used benchmarking analyiseslectricity distribution have involved
models that incorporate standard output charatitsjssuch as energy supplied (in MWh),
number of customers and network size (e.g., semaea or network length). For example,

see the literature review in London Economics (3988d Jamasb and Pollitt (2001).

2 See Coellet al (2003) for further discussion.
% See Giannakist al (2005) and Fumagalit al (2007) for more on this.

4 See Lawrence and Diewert (2006, p215) for an ésting discussion of why they were unable to inelad
quality variable in their electricity distributionenchmarking model which was used to set regulatess
prices in New Zealand. Their benchmarking modebived the use of total factor productivity indiceghich

do not incorporate “bad outputs” easily.



However, very few studies have included qualitysefvice measures in these models. Two
recent exceptions are the studies by Giannakisaslamand Pollitt (2005) and Growitsch,
Jamasb and Pollitt (2005).

Giannakis et al (2005) use data envelopment asa({&tA) methods to measure technical
efficiency (TE) and total factor productivity grdw{TFP) in 14 UK distribution authorities
over the 1991/92 to 1998/99 period. The DEA metisodsed to estimate a non-parametric
input distance function that involves three outpatiables (energy supplied, customers and
network length). Four models involving differemiput sets are considered: (i) operating
expenditure (OPEX); (ii) total expenditure (TOTEX}) number of interruptions (NINT)
and total interruptions (TINT); and (iv) TOTEX, NINand TINT. They find that the TE
scores of the various models are positively (but perfectly) correlated, and that the TE
scores rise when the NINT and TINT quality varisbbee added to the TOTEX model (a
result that is to be mathematically expected wharables are added to a DEA model).
They also find that TFP growth measures reduced(® when the quality variables are
added.

Growitsch et al (2005) use stochastic frontier gsial (SFA) methods to estimate an input
distance function using data on 505 electricitytribation utilities from eight European
countries in the 2002 financial year. Their modedsitain two output variables (energy
supplied and customers) and either one input ViaigbOTEX) or two input variables
(TOTEX and TINT). They also use the Battese andliC(1995) method to investigate the
effects of customer density (customers per netwarkand country (using dummy variables)
upon technical efficiency scores. They find theg inclusion of the quality variable reduces
TE for all but the large firms, plus they find thide TE scores from the two models are
significantly negatively correlated, both findingsing in contrast to those of Giannakis et al
(2005).

The above studies are to be commended for intraducjuality variables into these
benchmarking models. However, these studies gostamne shortcomings. First, they both

make use of TOTEX measures which contain capitpeediture (CAPEX) measures which

® This is also seen in a DEA study by Korhonen ayigBen (2003) of Finnish electricity distributioperators,
where the inclusion of a TINT variable into the DE#del led to increases in technical efficiencydarumber
of firms. For example, see their Figure 3. Howevmte that these results need to be treated ewittion

because their DEA model did not include a capiteasure, which could lead to substantial biases.



need not reflect the actual amount of capital sessiconsumed in a particular year. Second,
the UK study suffers from small sample size proldemhile the inter-country study suffers
from difficulties associated with deflating monstaralues of TOTEX in order to obtain

comparable measures of implicit input usage in eacimtry.

In the current study we aim to address these pmubley making use of a detailed database on
the activities of 92 electricity distribution unitsperated by EDF Réseau Distribution in

France in the 2003—-2005 financial years.

In France, most electricity distribution grids wiiare owned by municipalities, individually
or grouped in communities. Municipalities are e of the public service of electricity
distribution, which they delegate to a third pa®t8O within the framework of a concession.
The concession contracts between parties followingdlas model. The public service

requirements are, indeed, the same all over thietoou

The concession contracts define the rights andjatatins of the distributor regarding quality
of supply, customers’ connections and environmectdalditions. These contracts state that
the distributor is remunerated by the tariff apglte final users, which is supposed to cover
costs and investments. This tariff is the samealiathe concessions (one single pricing for all
the customers in France) and for all DSOs. Thesr&dr the use of public electricity grids,
including transmission and distribution networkse aet by the French Regulator, the CRE

(Commission de Régulation de I'Energie).

In this study, all distribution units are operalsdEDF Réseau Distribution, while the units in
the previous studies were regarded as individuataiprs. With these data we thus avoid the
small sample size problem; we avoid the internati@omparability problem; and we also
have access to comprehensive and comparable d#te oeplacement value of capital items,

so we can avoid the need to use CAPEX to measpitakaput services.

In addition to these advantages, we also utiligh BEA and SFA methods in this paper to
check for consistency across methodologies. Fumtbwe, as well as measuring the effect of
guality upon TE scores, we also make use of thdéoalstdescribed in Grosskopf et al (1995)
and Coelli and Rao (1998) to derive measures ofstiedow price of quality from the

curvature of the estimated distance functions. sThiormation could be quite valuable in
allowing one to assess the degree to which rewrdguality outcomes could influence the

services provided.

The remainder of this paper is divided in sectiolrs.Section 2 we present a description of
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the DEA and SFA methodologies used. In Sectiore3lescribe the data, before presenting
and discussing the empirical results in Sectiorme paper ends with some brief concluding

comments in Section 5.



2. METHODOLOGY

The methods used in this paper are similar to thussel in the Growitsch et al (2005) and
Giannakis et al (2005) studies. We model the prodn process using a multi-input, multi-
output input distance function and introduce thaligy variable as an input variable. The
logic associated with including the quality varialals an input variable is that the operators
can substitute between regular inputs (labour tabeic.) and the inconvenience faced by the
customers (interruptions). The rational operatirlaok at the “price of interruptions” (e.g.,
the penalty imposed by the regulator) and compawth the price of other inputs (e.g.,
labour) before deciding upon the optimal (cost mising) mix of inputs to use.

If the production technology (frontier) is knownk{ieh is rarely the case) we can measure the
distance that each data point (firm) lies belowftbatier by calculating the amount by which
the input vector X) can be proportionally reduced while holding thetpmt vector Y)
constant. That is, for each data pokyy) we seek to find the smallest possible value ef th
scalaré such that €x,y) remains within the feasible production set bowuhtg the frontier.
This is illustrated (for the case of a 2-input tealogy) in Figure 1, where the distance that
firm A is inside the frontier is equal t8=0B/OA. This distance (i.e., technical efficiency
score) equals approximately 0.7 in this diagranggesting that the firm could reduce input

usage by 30% and still produce the same outpubrect

x1
Frontier {)

Shadow|price line

X2

Figurel: Input oriented technical efficiency



In reality, the production frontier is rarely knowinmstead it is estimated using sample data on
a number of firms. This generally involves fitting empirical frontier that aims to minimise
these distances so that the frontier is a “tigtitté the data. In this paper we use both SFA

and DEA methods to estimate an input distance fomct

The input distance function may be defined on tipaii setL(y), as:
D, (x,y)=maxqp :& /o)Ly }, (1)

where p=1/8 and the input sdt(y) represents the set of all input vectoxs) R, which

can produce the output vector JR™ . That is,

L(y) ={XD RK :x can producg} . (2)

D, (x,y) is non-decreasing, positively linearly homogeneans concave iR, and increasing

iny. The distance function will take a value whiclgrsater than or equal to one if the input

vector, x, is an element of the feasible input skefy). That is, D, (x,y)=1 if xOL(y).

Furthermore, the distance function will take a ealf unity if x is located on the inner

boundary of the input set.

Stochastic frontier analysis (SFA)

Following Coelliet al (2003), a translog input distance function for thse oM outputs and

K inputs is specified as

InDy; = ao"'zamlnyml Zzzamnln)’mllnym"'Zﬂkln X

m=1 nF1rel (3)
K

%zzmlnxk.lnx.iz%mxk.myn., =1,2,.N
k=11=1 k=1m=1

wherei denotes théeth firm in the sample df firms® Note that to obtain the frontier surface
(i.e., the transformation function) one would 8gt1, which implies the left hand side of

equation (3) is equal to zero.

® Note that in our application we have annual daté9® units over a three year period. Hence we 236

observations. Given the short time period we assthmat there has been no technological progress thise
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Imposing homogeneity of degree +1 in inputs andragging we obtain

In(1/%)=ay+ Z AN Y + 5 Z Zamnln YmilN Vi + Z BeIn %
nF1rFl (4)

%Pi}iﬂ"”xkl'“’%*ZZ%m&.'n ¥i-In D, i=1,2,...N

k=1m=1

where X = % / %i -

The restrictions required for homogeneity of degrgéen inputs are

and

K K
> Ba=0, k=1,2,.K, and > B,=0, mF1.2,.M,
=1

k=1

period and hence pool the data as if it was a eigghr of data on 276 firms when estimating thedpction

frontiers.



and those required for symmetry are

Omn= Ghmy MN=1,2,..M, and L =L, kl=1,2,...K.
To estimate this model using SFA methods we repllaeadistance term with an error term
that has twa.i.d. components, ID; =v -y, wherev; ~ N(0,52)| is a symmetric error to
account for data noise and tbhe~ N(x, 02)| is a one-sided error to account for technical

inefficiency. The technical efficiency score foei-th firm is predicted using the conditional

expectation E[exp(-u |y — y)], which takes a value between 0 and 1. The maslel i

estimated using maximum likelihood ML) methods. t&\that prior to estimation the variance

2

parameters,gZand o are re-parameterised gs=o¢/(g2+0?) and g?=02+0¢ for

computational convenience.

Data Envelopment Analysis (DEA)

We also estimate an input distance function usighDnethods. This is a non-parametric
method where the frontier surface is a sequenceitefconnected hyper-planes that are
constructed using linear programming methods. t€hbknical efficiency scores are produced

as a by-product of the frontier construction preces

We begin by defining the additional notation tbatrepresents th&xN matrix of inputs,
which is constructed by placing the input vectogs,of all N firms side by side, and

denotes thé&1xN output matrix which is formed in an analogous n&nn

The input-orientated variable returns to scale (YREA frontier is defined by the solution to

N linear programs of the form:
maXsx 0,
st yi+YA20,
Xilp- XA =0,
N1'A=1
A0, (8)

wherep is the input distance measure defined earlier. nédte that #p<~ andthat 1pis the

proportional reduction in inputs that could be agled by the-th firm, with output quantities
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held constant. For further details on DEA, SFA dislance functions in general, see Coelli
et al (2005).

3. MEASUREMENT OF VARIABLES

The selection and measurement of input and outguiMes is a key aspect of any efficiency
analysis study. In this paper we have drawn upgankoowledge of the key cost drivers in

the French electricity distribution industry, alomgth reviewing the experiences gained in
previous analyses. For example, see those stadiesyed in London Economics (1999) and
Jamasb and Pollitt (2001), and more recent studied) as Lawrence and Diewert (2006) and
Edvardsen et al (2006).

Three output variables are used in the presenystmkergy supplied, number of customers
and network length or, alternatively, the serviceaa The amount of energy supplied in
gigawatt hours (GWH) is generally the first outpatriable thought of, since the aim of a
distribution company is to “supply electricity tastomers”. Although a distribution network
operator cannot normally determine the amount edtatity distributed, it has to ensure that
all its network assets have the capacity to delities energy to its customers. Hence, the
total amount of energy supplied may be viewed gwoxy for the load capacity of the
network. The measure used in this study is grésstreeity distributed (which includes

losses).

The number of customers (CUST) is also used asigpubvariable in our model because we
believe that this variable is needed to ensure tthatmodel does not unfairly discriminate
against those operators which sell smaller amooih&nergy per customer. Furthermore, a
large part of distribution activities (relating toetering services, customer connections,
customer calls, billing, etc.) are directly cortethto the number of customers. Note that our
measure only includes Low Voltage (LV) customeisce industrial customers who are

connected to the Medium Voltage (MV) network arthea small in number.

Finally, network length (NETL) in kilometres or,tainatively, the service area in squared
kilometres (KM2) is used as an additional outputialZle in our model to accommodate
differences in customer densities across operatdysiot of network operations, such as
routine maintenance, overhaul, vegetation managefoeroverhead lines, etc. are closely
linked to the length of MV and LV lines or, inditgg to the the size of the area served.

Moreover, the reliability of a distribution netwoakd therefore the level of quality of supply
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is often affected by the length of feeders thamnisither words, by customers’ density. In big
cities, where the feeders are mostly short and ngndend, the number of outages should be
lower than in less dense areas which tend to hdughaproportion of overhead lines. As a

consequence, the costs of repairs are generalijh@dame in urban versus rural areas.

The net effect of using these three output varglobeour model is to ensure that the key
aspects of output heterogeneity are captured, ab when we conduct benchmarking
comparisons using technical efficiency (TE) measuvee are conditioning on these factors
and hence comparing like with like. That is, nomparing distribution units like Lille with
the Southern Alps, and so on. Nevertheless, wawage that with three output variables, we
are unable to control for all environmental diffeces that could influence costs, such as
influence of forests and mountainous terrain, agieshe assets, accessibility of lines or

substations, climatic factors, etc.

The inputs used in electricity distribution are mand varied. In terms of capital inputs

there are underground and overhead lines of vanoliage levels, transformers, vehicles,

computers, and so on. Plus we have various typesbour — technicians, engineers,

managers, etc. — plus a variety of other mateaal$ services. One could perhaps define
dozens of input variables, but degrees of freedomtdtions in the production model prevent

us from doing that. Instead we have chosen todeadnly two input variables — capital inputs

(CAPITAL) and non capital inputs (OPEX).

Capital is measured using gross (not depreciatggacement value. We have chosen gross
in preference to net because we wish to avoid th&t®n where an operator that has
conducted a lot of recent investment is labellethaficient because their net capital stock is
high relative to others. In using this measureimplicitly make two assumptions. First we
assume that asset age does not significantly affwice potential. Second we assume that
all operators have assets with similar life spand Bence that annual service potential is
proportional to the stock. These assumptions egaadly quite reasonable in the current
study, since all the data come from a single distidon operator (EDF Réseau Distribution)
who defines and manages very similar policies feestment, operations and network asset

development across the various local distributioitsu

In terms of non-capital inputs, we use network apeg expenses net of depreciation and
interest as our aggregate measure of these itérhese are the direct operational costs of

local distribution units, excluding centralized wetk service support and overhead costs.
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These operational costs relate to day-to-day ojpesgtsuch as:

» operating, developing and maintaining distributinoatwork assets: looking after
substations and overhead lines, fault repairs, ternontrol and dispatching, and so

on;

* running connections services;

» providing meter services and any other customerventions;
» relations with local authorities and customers; etc

We could have chosen to split this OPEX groupirtg labour and non-labour groups, but
given that labour expense dominates this categod that outsourcing is blurring the

boundaries between these two categories, we detidese a single variable.

Finally, quality is measured as the total numbermeérruptions (NINT) — excluding short

interruptions of three minutes or less. We cowdd@ehalternatively considered using a total
minutes of interruptions (MINT) measure, but we fekt this latter measure would be more
influenced by random geographical factors thatnateunder the control of managers, relative
to the NINT measure. The total number of intenmp NINT has been calculated as

follows:
NINT = SAIFI x Total number of customers

According to the international standards relatveguality of supply, SAIFI (System Average
Interruption Frequency) is the average number o$tasned interruptions (>3 min)

experienced per customer served per year.

Total number of customer interruptior
Total number of customers served

SAIFI =

Therefore, NINT represents the total number of gesa It includes unplanned interruptions,
even those for which the distribution company ismesponsible (transmission network, third-
part, ...), and also planned interruptions (e.g.a¢ccommodate extensions, upgrades, etc.).
Exceptional events have been excluded in ordetandisadvantage distribution units which

experienced major climatic events (big storms,dgeaetc.) in the study period.

" CAPITAL and OPEX variables are expressed in 20€6ep using a gross industrial commodities price

deflator.
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Table 1l: Descriptive Statistics

Variable mean st. dev. min. max.
CUST W | 324857 134162 109435 762905
NETL Y2 13359 6165 4060 32743
KM2 Y2 5532 3125 129 13871
GWH Vs 3557 1477 1001 7976
OPEX X 22194 8222 10575 57591
CAPITAL X, | 626924 215874 250001 1212792
NINT X3 | 390420 249524 49901 1927519

Note: OPEX and CAPITAL in 1,000 €. Paris exclud®dNT in number of
customers interrupted; KM2 in Km

4. EMPIRICAL RESULTS

In this section we present the results of the edton of alternative models, input distance
functions including or not quality, performed usi8§A and DEA. Our objective is three-
fold. First, to investigate the statistical sengipiof results to the inclusion of quality in SFA
estimations. Second, to compare the technicatieffty, SFA and DEA, scores obtained by
each operator taking or not quality into accountaasalternative way to identify potential
trade-offs between quantity and quality improveraenfThird, to analyze how electricity
distribution operators behave to take into accaality, mainly service interruptions faced
by customers, in their cost minimization decisionsin other word, we estimate the shadow

prices operators associate to quality in their ajpp@nal design.
SFA model estimation

The “base model” output variables are CUST, NETLKWM?2) and GWH (y1, y2, y3) and the
input variables are OPEX, CAPITAL and NINT (x1, x&). When we refer to the “without
quality” model we refer to a model with all of tAbove variables, with the exception of the

NINT quality variable.
The ML estimates of the SFA “without quality” andase” models are listed in Table 2. The
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results for two alternative specifications, with NEor KM2 as y output, are reported. Each
variable has been divided by its sample mean andehéhe first order parameters can be
interpreted as elasticities at the sample mean8. input and output elasticities have the

expected signs for average variable values.

In the input side, it is the elasticity with respéx capital (CAP) that dominates, with values
close to 0.90, while elasticity with respect to @enal expenditures (OPEX) oscillates
around 0.10 and that corresponding to quality (NIRD15 and 0.014 under the models with

NETW and KM2 as network sizes, respectively.

In the output side, it is the elasticity with resp& the number of customers (CUST) that
dominates the elasticity with respect the netwdzk,sespecially when the size is represented
by the service area (KM2), and the elasticity wehpect to energy distributed (GWH) that in
all cases reach rather small values, closer to-0.05. Ray scale economies are calculated as
the negative of the inverse of the sum of thes@uiutlasticities. It varies from 1.049 to
1.099 across models indicating mildly increasirtgnres to scale at the sample mean.

Two annual dummies were introduced in the modelatch potential inter-temporal shifts at
the frontier level. No significant changes areeaslied during the first year (2003 to 2004),
but a negative and significant change is estimdtedthe second year (2004 to 2005),
particularly under the KM2 specification with annasial rate close to — 2.0%. Note also that
the y coefficient is in all cases near 1.0 indicatingttthe share of the inefficiency term

variance in the total composed error variance & ©680%.

Summing up, the results presented in Table 2 rhitstthe main features of electricity
distribution activity in France over the period 200 2005, as corresponding to the 92 EDF
DSO analysed here. Even if the role of qualityesp to be rather small, and in some cases
associated with statistically insignificant estiorat LLR tests performed on both models
indicate that quality matters. Nevertheless, githext the value of LLR test for the model with
KM2 gives a higher value, 97.0 (d.f. = 6), thae thodel with NETW, 20.0 (d.f. = 6), we
retain this model results for presentation purpaseise following sections.
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Table2: SFA Estimates

Network length (NETW)

Area served (KM2)

Variables without quality base without quality base
Coef. (t-ratio) Coef. (t-ratio) Coef.| (t-ratio) Coef. (t-ratio)

Intercept 0.120 (11.8) 0.118 (11.1) 0.312 (22.1) 0.340 (17.0)
X; (OPEX) 0.093 (*) 0.111 (*) 0.072| (*) 0.105 (*)
X, (CAP) 0.907 (59.5) 0.874 (53.8) 0.928 (46.3) 0.881 (45.6)
X3 (NINT) - - 0.015 (2.6) - - 0.014 (2.1)
X1X1 -0.150 (*) -0.188 (*) -0.182] (*) 0.150 (*)
XX -0.150 (2.6) -0.063 (1.0) -0.182| (2.9) -0.141 (2.1)
X3X3 - - -0.018 (1.3) - - -0.010 (0.6)
X1Xo 0.150 (*) 0.116 (*) 0.182| (*) 0.184 (*)
X1X3 - - 0.072 (*) - - 0.053 (*)
XoX3 - - -0.053 (2.5) - - -0.043 (1.4)
y; (CUST) -0.452 (16.5) -0.463 (15.3) -0.707| (22.2) -0.667 (17.3)
Y. (NETW,KM2) | -0.400 (24.0) -0.393 (21.9) -0.192 (16.0) -0.200 (17.6)
ys (GWH) -0.064 (3.0) -0.054 (2.3) -0.054| (1.7) -0.069 (2.4)
A -0.336 (1.8) -0.239 (1.2) 0.249 (1.0) 0.153 (0.7)
yay- 0.038 (0.7) 0.062 (1.0) -0.018/ (1.2) -0.041 (2.8)
Va3 -0.095 (0.6) 0.082 (0.5) 0.403) (2.3) 0.281 (1.7)
A 0.180 (3.7) 0.143 (2.5) 0.106| ( 2.5) 0.034 (0.9)
Y1Ys 0.178 (1.1) 0.035 (0.2) -0.419 (2.1) -0.294 (1.6)
Vo3 -0.092 (2.2) -0.082 (1.8) -0.071 (2.4) -0.061 (2.7)
X1Y1 -0.080 (*) -0.188 (*) -0.142| (*) -0.130 (*)
X1y 0.028 (*) 0.049 (*) -0.020| (*) 0.007 (*)
X1Y3 0.047 (*) 0.119 (*) 0.088| (*) 0.079 (*)
XoY1 0.080 (1.0) 0.237 (2.7) 0.142| (1.5) 0.180 (1.9)
XoY2 -0.028 (1.1) -0.063 (2.3) 0.020| ( 1.6) -0.005 (0.4)
X5Y3 -0.047 (0.6) -0.177 (2.3) -0.088| (1.0) -0.133 (1.5)
X3Y1 - - -0.049 (1.8) - - -0.050 (1.4)
X3y - - 0.015 (1.6) - - -0.001 (0.3)
X3Y3 - - 0.058 (2.4) - - 0.054 (1.8)
d, (year 2004) -0.001(0.4) 0.004 (1.5) 0.006| ( 1.8) 0.005 (1.6)
d, (year 2005) 0.007 ( 2.4) 0.016 (4.3) 0.021) (5.2) 0.022 (4.9)
o 0.016 (2.7) 0.016 (2.6) 0.012] (10.4) 0.022 (8.7)
y 0.985 (168.4) 0.986 (171.6) 0.976 (416.8) 0.990 (427.6)
u 0.034 (0.6) 0.043 (0.8) 0.214] (10.1) 0.293 (14.4)
LLF 564.3 574.3 470.3 518.8

(*) Parameter computed applying homogeneity caoait




Technical efficiency: DEA vs. SFA

The means and standard deviations of the TE sémmsthe SFA and DEA models (with and
without quality) are listed in Table 3. The SFAJADEA models have quite similar means.
Furthermore, the exclusion of the quality varialees not have a significant effect upon
mean TE. This is not surprising given the smatksof the quality elasticity in the SFA
results in Table 2. Actually, the comparison shdugddone in terms of evolution of ranking

between the models with and without quality, antlaroa TE scores comparison.

This suggests that the incorporation of qualitp iatbenchmarking model is unlikely to have
a substantial effect upon price regulation outcanté®vever, our empirical results differ
from those reported in Growitset al (2005) and Giannakist al (2005). Perhaps our results
could be in part a consequence of the short pectndered by the data and the relative
uniformity of quality regimes across these 92 EDdtrdbution units? In future work we plan

to incorporate data from other operators in otloemtries to test this hypothesis.

Table3
Technical efficiency scores

DEA SFA

without without

quality base quality base
Descriptive statistics

mean 0.823 0.829 0.756 0.741
std 0.123 0.125 0.101 0.099
min 0.532 0.532 0.556 0.554
max 1.000 1.000 0.994 0.989

Correlation table

DEA  without quality 1.000 0.988 0.499 0.510
base 0.988 1.000 0.502 0.516
SFA  without quality 0.499 0.502 1.000 0.989
base 0.510 0.516 0.989 1.000

Shadow shares and prices

Nevertheless, we derive interesting conclusionsftbe study of input shadow prices and
input shares obtained from the estimation of thedeho Input shadow prices reflect the
potential trade-offs between inputs. The slopé&hefshadow price line in Figure 1 (which is

at a tangent to frontier at the point where thenfis operating) reflects these trade-offs.
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When a frontier is estimated we can find the slopis line for each firm. If the price of
one regular input is known then the shadow pric#hefNINT input can be calculated. Some
average shadow price estimates for NINT are ligtedable 4, which have been obtained
using the OPEX input price (1 Euro). These vakesinterpreted such that the mean value
of 7.6 from the SFA model suggests that the malgiaat of reducing one interruption (on
average) would be 7.6 Euros. However, we note tt@atDEA estimate is 50% larger than
this SFA estimate (10.6 Euros) and that the shgaolose varies substantially across quintiles,
indicating that the marginal cost is higher fordbmperators which already have low rates of
interruptions by customer (SAIFI), as one wouldentp This result is confirmed, mainly for
the SFA model, when looking to average quality skagrices by quintiles distinguished by
customers’ density or by the share of network ugibemd lines, two features that appear to

be highly correlated with quality in electricitystiiibution among French DSO operators.

In Table 4 average shadow shares by quintileslaceraported. They correspond to the SFA
partial elasticities of the distance function wittspect OPEX, CAP and NINT variables,
respectively. It appears that distribution unitgf@ening lowest quality levels (Q5) are
characterised by higher OPEX and lower CAPITAL sivacshares, while the opposite is
verified for operators reaching higher quality stamds (Q1). Nevertheless, these results do
not allow us to conclude any correlation between ittvestment policy of a utility and the
level of quality since they are inherently linkedthe customer density (urban vs. rural) in the

supplied area as it can be observed at the bottahe same table.

5.  CONCLUSIONS

In this study we explored the possibility to incorgte the quality of service in a
benchmarking model using as illustration the Fregleltricity distribution sector operated by
near hundred DSO belonging to EDF. For this purpaseestimate an input distance function

applying two alternative frontier approaches: pagaaim SFA and non parametric DEA.

The results, obtained in a multi-dimensional sgitere very close with both approaches and
show that in the case under study the incorporadioquality does not have a significant

effect upon technical efficiency scores.

Nevertheless, in this analysis we find that the mslaadow price in term of OPEX of one
interruption ranges from approximately eight tovele Euros per year. In other words,
electricity distribution operators face a tradelodtween network investments and operational
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expenditures, but they are deeply correlated tantherent customer density factor.

These results would be useful for regulation degigrposes as they could be compared with

the customers/society willingness to pay for thel®f quality produced by each company.

Table4
Shadow price estimates for quality and input shadow shares
(by quintiles)
e Quality shadow price Input shadow shares (SFA)
Quintiles
SFA | DEA OPEX | CAP | NINT
SAIFI (number of interruptions per customer perryea
Q1] <0.80 ] 45.8 80.1 0.055 0.921 0.024
Q2 [0.80-1.03] 16.1 16.1 0.1 0.880 0.02(
Q3[1.03-1.33] 7.4 10.1 0.104 0.883 0.013
Q4 [1.33-1.74] 4.6 4.5 0.123 0.866 0.011
Q5[ >1.74 ] 0.9 0.1 0.138 0.858 0.003
Density (customers per km2)
Q1[ >7,250 ] 27.9 14.9 0.148 0.937 0.021
Q2 [6,100-7,250] 11.9 8.8 0.132 0.894 0.018
Q3 [5,100-6,100] 7.1 8.4 0.114 0.872 0.014
Q4 [2,000-5,100] 5.4 12.9 0.88 0.855 0.013
Q5[ <2,000 ] 1.9 5.3 0.043 0.847 0.005
% of underground lines

Q1] >52.0] 33.6 10.6 0.043 0.935 0.028
Q2 [37.4-52.0] 11.3 12.6 0.088 0.893 0.019
Q3[30.4-37.4] 5.7 6.9 0.117 0.872 0.011
Q4 [23.3-30.4] 6.3 21.1 0.124 0.862 0.013
Q5[ <23.3] 15 5.6 0.152 0.843 0.005

All 7.6 10.6 0.105 0.881 0.014
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