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ABSTRACT 

In this paper we use annual data on 92 French electricity distribution units (2003-2005) to 

estimate a benchmarking model that includes a quality of service indicator (number of 

interruptions).  Our methodology involves the estimation of input distance functions using 

stochastic frontier analysis (SFA) and data envelopment analysis (DEA) techniques.  The 

empirical results indicate that the inclusion of the quality variable has no significant effect 

upon mean technical efficiency scores, and the mean shadow price of one interruption is 

approximately ten Euros.   
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1. INTRODUCTION 

The electricity supply industries in many countries have undergone profound changes in 

recent decades.1  In a number of these countries, market mechanisms have been introduced in 

the generation and supply activities.   

Over Europe, member states moves on the path of liberalisation at different paces. To 

illustrate these differences one may mention as an example France and Germany. In Germany 

the market has been entirely open to all customers independently of their consumption level 

since 1998. In France, the liberalisation process started in 2000. It was undertaken 

progressively step by step. In the first stage the liberalisation process only concerned the 

electro-intensive customers. In the current final stage, which started on July 2007, the whole 

French market is fully opened to competition.  

In this liberalisation process, the network activities (the so-called wires businesses) given 

their natural monopoly specificity require a regulation framework, which is either defined by 

the industry itself (self regulation) or by an independent regulation authority. The German 

experience illustrated how self-regulation appeared to be inappropriate to guarantee a same 

level playing field among the market players of the German electricity markets.  

Independent regulatory authorities, which were set up in the different European states, are 

thus required to monitor the wires businesses operated by grid operators (Distribution System 

Operator and). They ensure that all market players have a fair access to an essential facility at 

a fair access charge.  

The role of these regulation authorities is thus to prevent a regulated grid operator from the 

realisation of any economic profit. To ensure this task, he usually sets a tariff, the access 

charge, which allows the grid operator to fully recover their total costs. 

Meanwhile this regulation scheme does not provide grid operators incentives to achieve cost 

efficiency as they may overinvest in capital, an effect pointed out by Averch-Johnson (1962). 

To avoid the emergence of this effect, regulators can rely on a specific regulation scheme, 

called incentive regulation. In such scheme, the regulator defines productivity objectives, 

which should be achieved by the grid operator.  Such efforts are costly for DSO, they will  

undertake them whether they are rewarded for them. 

                                                 

1 For example, see Newberry (2000). 
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Given that a regulator generally has some uncertainty regarding the efficient level of a DSO’s 

costs, the grid operator can be rewarded for the effort beyond the efficient level.  

Benchmarking thus may appear as a useful tool for a regulator to use in assessing the 

efficiency and the performance of a DSO.2  A robust benchmarking model can help the 

industry regulators to determine the relative efficiency of different DSOs and to set their 

reasonable targets in term of cost efficiency.  But these methods have a caveat, since they can 

create incentives for cost reductions which may have an impact on the quality of service.  A 

challenge for the regulatory body is to find a suitable method to ensure that cost reductions do 

not have an adverse effect on the quality of electricity distribution.  

For that purpose, regulators normally rely on tariff and quality incentive schemes.3  Usually 

these two schemes are separated.  The tariff incentive scheme, generally involving a revenue-

cap or a price-cap regulation, often makes use of a benchmarking model that seeks to identify 

the efficient level of costs for each operator.  The quality incentive scheme on the other hand 

generally involves a reward/penalty mechanism that is based on pre-specified performance 

levels in terms of acceptable outages (frequency and/or duration).4   

An alternative approach could be to include the quality aspect into the efficiency 

benchmarking.  By doing so, the efficiency requirement also includes incentives for quality 

improvements.  The purpose of this study is thus to investigate the feasibility of combining 

both incentive schemes into one.  In particular, we investigate alternative efficiency 

measurement models that also incorporate quality measures that could then give a good idea 

of the real efficiency of a distribution company, that can take into account its structural 

constraints and public service obligations.  

Up till now, most widely used benchmarking analyses in electricity distribution have involved 

models that incorporate standard output characteristics, such as energy supplied (in MWh), 

number of customers and network size (e.g., service area or network length).  For example, 

see the literature review in London Economics (1999) and Jamasb and Pollitt (2001).  
                                                 

2 See Coelli et al (2003) for further discussion. 

3 See Giannakis et al (2005) and Fumagalli et al (2007) for more on this. 

4 See Lawrence and Diewert (2006, p215) for an interesting discussion of why they were unable to include a 

quality variable in their electricity distribution benchmarking model which was used to set regulated access 

prices in New Zealand.  Their benchmarking model involved the use of total factor productivity indices, which 

do not incorporate “bad outputs” easily. 
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However, very few studies have included quality of service measures in these models.  Two 

recent exceptions are the studies by Giannakis, Jamasb and Pollitt (2005) and Growitsch, 

Jamasb and Pollitt (2005).  

Giannakis et al (2005) use data envelopment analysis (DEA) methods to measure technical 

efficiency (TE) and total factor productivity growth (TFP) in 14 UK distribution authorities 

over the 1991/92 to 1998/99 period.  The DEA method is used to estimate a non-parametric 

input distance function that involves three output variables (energy supplied, customers and 

network length).  Four models involving different input sets are considered: (i) operating 

expenditure (OPEX); (ii) total expenditure (TOTEX); (iii) number of interruptions (NINT) 

and total interruptions (TINT); and (iv) TOTEX, NINT and TINT.  They find that the TE 

scores of the various models are positively (but not perfectly) correlated, and that the TE 

scores rise when the NINT and TINT quality variables are added to the TOTEX model (a 

result that is to be mathematically expected when variables are added to a DEA model).5  

They also find that TFP growth measures reduces by 40% when the quality variables are 

added.   

Growitsch et al (2005) use stochastic frontier analysis (SFA) methods to estimate an input 

distance function using data on 505 electricity distribution utilities from eight European 

countries in the 2002 financial year.  Their models contain two output variables (energy 

supplied and customers) and either one input variable (TOTEX) or two input variables 

(TOTEX and TINT).  They also use the Battese and Coelli (1995) method to investigate the 

effects of customer density (customers per network km) and country (using dummy variables) 

upon technical efficiency scores.  They find that the inclusion of the quality variable reduces 

TE for all but the large firms, plus they find that the TE scores from the two models are 

significantly negatively correlated, both findings being in contrast to those of Giannakis et al 

(2005). 

The above studies are to be commended for introducing quality variables into these 

benchmarking models.  However, these studies contain some shortcomings.  First, they both 

make use of TOTEX measures which contain capital expenditure (CAPEX) measures which 

                                                 

5 This is also seen in a DEA study by Korhonen and Syrjänen (2003) of Finnish electricity distribution operators, 

where the inclusion of a TINT variable into the DEA model led to increases in technical efficiency for a number 

of firms.  For example, see their Figure 3.  However, note that these results need to be treated with caution 

because their DEA model did not include a capital measure, which could lead to substantial biases. 
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need not reflect the actual amount of capital services consumed in a particular year.  Second, 

the UK study suffers from small sample size problems while the inter-country study suffers 

from difficulties associated with deflating monetary values of TOTEX in order to obtain 

comparable measures of implicit input usage in each country. 

In the current study we aim to address these problems by making use of a detailed database on 

the activities of 92 electricity distribution units operated by EDF Réseau Distribution in 

France in the 2003–2005 financial years.   

In France, most electricity distribution grids which are owned by municipalities, individually 

or grouped in communities.  Municipalities are in charge of the public service of electricity 

distribution, which they delegate to a third party DSO within the framework of a concession. 

The concession contracts between parties follow a similar model.  The public service 

requirements are, indeed, the same all over the country.  

The concession contracts define the rights and obligations of the distributor regarding quality 

of supply, customers’ connections and environmental conditions. These contracts state that 

the distributor is remunerated by the tariff applied to final users, which is supposed to cover 

costs and investments.  This tariff is the same for all the concessions (one single pricing for all 

the customers in France) and for all DSOs.  The rates for the use of public electricity grids, 

including transmission and distribution networks, are set by the French Regulator, the CRE 

(Commission de Régulation de l’Energie). 

In this study, all distribution units are operated by EDF Réseau Distribution, while the units in 

the previous studies were regarded as individual operators.  With these data we thus avoid the 

small sample size problem; we avoid the international comparability problem; and we also 

have access to comprehensive and comparable data on the replacement value of capital items, 

so we can avoid the need to use CAPEX to measure capital input services. 

In addition to these advantages, we also utilise both DEA and SFA methods in this paper to 

check for consistency across methodologies.  Furthermore, as well as measuring the effect of 

quality upon TE scores, we also make use of the methods described in Grosskopf et al (1995) 

and Coelli and Rao (1998) to derive measures of the shadow price of quality from the 

curvature of the estimated distance functions.  This information could be quite valuable in 

allowing one to assess the degree to which rewards for quality outcomes could influence the 

services provided. 

The remainder of this paper is divided in sections.  In Section 2 we present a description of 
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the DEA and SFA methodologies used.  In Section 3 we describe the data, before presenting 

and discussing the empirical results in Section 4.  The paper ends with some brief concluding 

comments in Section 5. 
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2. METHODOLOGY 

The methods used in this paper are similar to those used in the Growitsch et al (2005) and 

Giannakis et al (2005) studies.  We model the production process using a multi-input, multi-

output input distance function and introduce the quality variable as an input variable.  The 

logic associated with including the quality variable as an input variable is that the operators 

can substitute between regular inputs (labour, capital etc.) and the inconvenience faced by the 

customers (interruptions).  The rational operator will look at the “price of interruptions” (e.g., 

the penalty imposed by the regulator) and compare it with the price of other inputs (e.g., 

labour) before deciding upon the optimal (cost minimising) mix of inputs to use. 

If the production technology (frontier) is known (which is rarely the case) we can measure the 

distance that each data point (firm) lies below the frontier by calculating the amount by which 

the input vector (x) can be proportionally reduced while holding the output vector (y) 

constant.  That is, for each data point (x,y) we seek to find the smallest possible value of the 

scalar θ such that (θx,y) remains within the feasible production set bounded by the frontier.  

This is illustrated (for the case of a 2-input technology) in Figure 1, where the distance that 

firm A is inside the frontier is equal to θ=0B/0A.  This distance (i.e., technical efficiency 

score) equals approximately 0.7 in this diagram, suggesting that the firm could reduce input 

usage by 30% and still produce the same output vector. 

 

 

Figure 1:  Input oriented technical efficiency 
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In reality, the production frontier is rarely known.  Instead it is estimated using sample data on 

a number of firms.  This generally involves fitting an empirical frontier that aims to minimise 

these distances so that the frontier is a “tight-fit” to the data.  In this paper we use both SFA 

and DEA methods to estimate an input distance function. 

The input distance function may be defined on the input set, L(y), as: 

 { }( , ) max : ( / ) ( )ID Lρ ρ= ∈x y x y , (1) 

where 1/ρ θ=  and the input set L(y) represents the set of all input vectors, KR+∈x , which 

can produce the output vector, MR+∈y .  That is, 

 { }( ) :  can produce KL R+= ∈y x x y . (2) 

( , )ID x y  is non-decreasing, positively linearly homogeneous and concave in x, and increasing 

in y.  The distance function will take a value which is greater than or equal to one if the input 

vector, x, is an element of the feasible input set, L(y). That is, ( , )ID x y ≥1 if x∈L(y).  

Furthermore, the distance function will take a value of unity if x is located on the inner 

boundary of the input set. 

 

Stochastic frontier analysis (SFA) 

Following Coelli et al (2003), a translog input distance function for the case of M outputs and 

K inputs is specified as 
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where i denotes the i-th firm in the sample of N firms.6  Note that to obtain the frontier surface 

(i.e., the transformation function) one would set Di=1, which implies the left hand side of 

equation (3) is equal to zero. 

                                                 

6 Note that in our application we have annual data on 92 units over a three year period.  Hence we have 276 

observations.  Given the short time period we assume that there has been no technological progress over this 
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Imposing homogeneity of degree +1 in inputs and rearranging we obtain 
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where * / Kiki kix x x= . 

The restrictions required for homogeneity of degree +1 in inputs are  
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period and hence pool the data as if it was a single year of data on 276 firms when estimating the production 

frontiers. 
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and those required for symmetry are  

 αmn = αnm,   m,n=1,2,...,M,   and   βkl = βkl,   k,l=1,2,...,K. 

To estimate this model using SFA methods we replace the distance term with an error term 

that has two i.i.d. components, ln i i iD v u= − , where vi ~ |N(0, 2
vσ )| is a symmetric error to 

account for data noise and the ui ~ |N(µ, 2
uσ )| is a one-sided error to account for technical 

inefficiency.  The technical efficiency score for the i-th firm is predicted using the conditional 

expectation [exp( | )]i i iE u v u− − , which takes a value between 0 and 1.  The model is 

estimated using maximum likelihood ML) methods.  Note that prior to estimation the variance 

parameters, 2
vσ and 2

uσ  are re-parameterised as 2 2 2/( )u u vγ σ σ σ= +  and 2 2 2
u vσ σ σ= +  for 

computational convenience. 

 

Data Envelopment Analysis (DEA) 

We also estimate an input distance function using DEA methods.  This is a non-parametric 

method where the frontier surface is a sequence of interconnected hyper-planes that are 

constructed using linear programming methods.  The technical efficiency scores are produced 

as a by-product of the frontier construction process.   

We begin by defining the additional notation that X represents the K×N matrix of inputs, 

which is constructed by placing the input vectors, xi, of all N firms side by side, and Y 

denotes the M×N output matrix which is formed in an analogous manner. 

The input-orientated variable returns to scale (VRS) DEA frontier is defined by the solution to 

N linear programs of the form: 

 maxρ,λ ρ, 

 st -yi + Yλλλλ ≥ 0, 

  xi/ρ - Xλλλλ ≥ 0, 

  N1′λλλλ=1 

  λλλλ ≥ 0,  (8) 

where ρ is the input distance measure defined earlier.  We note that 1≤ρ≤∞ and that 1/ρ is the 

proportional reduction in inputs that could be achieved by the i-th firm, with output quantities 
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held constant.  For further details on DEA, SFA and distance functions in general, see Coelli 

et al (2005).   

 

3. MEASUREMENT OF VARIABLES 

The selection and measurement of input and output variables is a key aspect of any efficiency 

analysis study.  In this paper we have drawn upon our knowledge of the key cost drivers in 

the French electricity distribution industry, along with reviewing the experiences gained in 

previous analyses.  For example, see those studies surveyed in London Economics (1999) and 

Jamasb and Pollitt (2001), and more recent studies, such as Lawrence and Diewert (2006) and 

Edvardsen et al (2006). 

Three output variables are used in the present study: energy supplied, number of customers 

and network length or, alternatively, the service area.  The amount of energy supplied in 

gigawatt hours (GWH) is generally the first output variable thought of, since the aim of a 

distribution company is to “supply electricity to customers”.  Although a distribution network 

operator cannot normally determine the amount of electricity distributed, it has to ensure that 

all its network assets have the capacity to deliver this energy to its customers.  Hence, the 

total amount of energy supplied may be viewed as a proxy for the load capacity of the 

network.  The measure used in this study is gross electricity distributed (which includes 

losses).  

The number of customers (CUST) is also used as an output variable in our model because we 

believe that this variable is needed to ensure that the model does not unfairly discriminate 

against those operators which sell smaller amounts of energy per customer.  Furthermore, a 

large part of distribution activities (relating to metering services, customer connections, 

customer calls, billing, etc.) are directly correlated to the number of customers.  Note that our 

measure only includes Low Voltage (LV) customers, since industrial customers who are 

connected to the Medium Voltage (MV) network are rather small in number. 

Finally, network length (NETL) in kilometres or, alternatively, the service area in squared 

kilometres (KM2) is used as an additional output variable in our model to accommodate 

differences in customer densities across operators.  A lot of network operations, such as 

routine maintenance, overhaul, vegetation management for overhead lines, etc. are closely 

linked to the length of MV and LV lines or, indirectly, to the the size of the area served.  

Moreover, the reliability of a distribution network and therefore the level of quality of supply 
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is often affected by the length of feeders that is, in other words, by customers’ density.  In big 

cities, where the feeders are mostly short and underground, the number of outages should be 

lower than in less dense areas which tend to have a high proportion of overhead lines.  As a 

consequence, the costs of repairs are generally not the same in urban versus rural areas. 

The net effect of using these three output variables in our model is to ensure that the key 

aspects of output heterogeneity are captured, so that when we conduct benchmarking 

comparisons using technical efficiency (TE) measures, we are conditioning on these factors 

and hence comparing like with like.  That is, not comparing distribution units like Lille with 

the Southern Alps, and so on.  Nevertheless, we are aware that with three output variables, we 

are unable to control for all environmental differences that could influence costs, such as 

influence of forests and mountainous terrain, ages of the assets, accessibility of lines or 

substations, climatic factors, etc. 

The inputs used in electricity distribution are many and varied.  In terms of capital inputs 

there are underground and overhead lines of various voltage levels, transformers, vehicles, 

computers, and so on.  Plus we have various types of labour – technicians, engineers, 

managers, etc. – plus a variety of other materials and services.  One could perhaps define 

dozens of input variables, but degrees of freedom limitations in the production model prevent 

us from doing that.  Instead we have chosen to define only two input variables – capital inputs 

(CAPITAL) and non capital inputs (OPEX).  

Capital is measured using gross (not depreciated) replacement value.  We have chosen gross 

in preference to net because we wish to avoid the situation where an operator that has 

conducted a lot of recent investment is labelled as inefficient because their net capital stock is 

high relative to others.  In using this measure we implicitly make two assumptions.  First we 

assume that asset age does not significantly affect service potential.  Second we assume that 

all operators have assets with similar life spans and hence that annual service potential is 

proportional to the stock.  These assumptions are arguably quite reasonable in the current 

study, since all the data come from a single distribution operator (EDF Réseau Distribution) 

who defines and manages very similar policies for investment, operations and network asset 

development across the various local distribution units. 

In terms of non-capital inputs, we use network operating expenses net of depreciation and 

interest as our aggregate measure of these items.  These are the direct operational costs of 

local distribution units, excluding centralized network service support and overhead costs.  
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These operational costs relate to day-to-day operations, such as: 

• operating, developing and maintaining distribution network assets: looking after 

substations and overhead lines, fault repairs, remote control and dispatching, and so 

on; 

• running connections services; 

• providing meter services and any other customer interventions; 

• relations with local authorities and customers; etc. 

We could have chosen to split this OPEX grouping into labour and non-labour groups, but 

given that labour expense dominates this category and that outsourcing is blurring the 

boundaries between these two categories, we decided to use a single variable.7 

Finally, quality is measured as the total number of interruptions (NINT) – excluding short 

interruptions of three minutes or less.  We could have alternatively considered using a total 

minutes of interruptions (MINT) measure, but we felt that this latter measure would be more 

influenced by random geographical factors that are not under the control of managers, relative 

to the NINT measure.  The total number of interruptions NINT has been calculated as 

follows: 

 NINT =  SAIFI × Total number of customers 

According to the international standards relative to quality of supply, SAIFI (System Average 

Interruption Frequency) is the average number of sustained interruptions (>3 min) 

experienced per customer served per year.  

 SAIFI =  
Total number of customer interruptions 

Total number of customers served
 

Therefore, NINT represents the total number of outages.  It includes unplanned interruptions, 

even those for which the distribution company is not responsible (transmission network, third-

part, …), and also planned interruptions (e.g., to accommodate extensions, upgrades, etc.).  

Exceptional events have been excluded in order not to disadvantage distribution units which 

experienced major climatic events (big storms, floods, etc.) in the study period. 

                                                 

7 CAPITAL and OPEX variables are expressed in 2005 prices using a gross industrial commodities price 

deflator. 
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Table 1:  Descriptive Statistics 

Variable mean st. dev. min. max. 

CUST y1 324857 134162 109435 762905 

NETL y2 13359 6165 4060 32743 

KM2 y2 5532 3125 129 13871 

GWH y3 3557 1477 1001 7976 

OPEX x1 22194 8222 10575 57591 

CAPITAL x2 626924 215874 250001 1212792 

NINT x3 390420 249524 49901 1927519 

Note:  OPEX and CAPITAL in 1,000 €. Paris excluded; NINT in number of 
customers interrupted; KM2 in Km2. 

 

4. EMPIRICAL RESULTS 

In this section we present the results of the estimation of alternative models, input distance 

functions including or not quality, performed using SFA and DEA.  Our objective is three-

fold. First, to investigate the statistical sensibility of results to the inclusion of quality in SFA 

estimations.  Second, to compare the technical efficiency, SFA and DEA, scores obtained by 

each operator taking or not quality into account as an alternative way to identify potential 

trade-offs between quantity and quality improvements.  Third, to analyze how electricity 

distribution operators behave to take into account quality, mainly service interruptions faced 

by customers, in their cost minimization decisions or, in other word, we estimate the shadow 

prices operators associate to quality in their operational design.   

SFA model estimation 

The “base model” output variables are CUST, NETL (or KM2) and GWH (y1, y2, y3) and the 

input variables are OPEX, CAPITAL and NINT (x1, x2, x3).  When we refer to the “without 

quality” model we refer to a model with all of the above variables, with the exception of the 

NINT quality variable. 

The ML estimates of the SFA “without quality” and “base” models are listed in Table 2. The 
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results for two alternative specifications, with NETL or KM2 as y2 output, are reported.  Each 

variable has been divided by its sample mean and hence the first order parameters can be 

interpreted as elasticities at the sample means.  All input and output elasticities have the 

expected signs for average variable values.  

In the input side, it is the elasticity with respect to capital (CAP) that dominates, with values 

close to 0.90, while elasticity with respect to operational expenditures (OPEX) oscillates 

around 0.10 and that corresponding to quality (NINT) 0.015 and 0.014 under the models with 

NETW and KM2 as network sizes, respectively.   

In the output side, it is the elasticity with respect to the number of customers (CUST) that 

dominates the elasticity with respect the network size, especially when the size is represented 

by the service area (KM2), and the elasticity with respect to energy distributed (GWH) that in 

all cases reach rather small values, closer to 0.05-0.07.  Ray scale economies are calculated as 

the negative of the inverse of the sum of these output elasticities.  It varies from 1.049 to 

1.099 across models indicating mildly increasing returns to scale at the sample mean. 

Two annual dummies were introduced in the model to catch potential inter-temporal shifts at 

the frontier level.  No significant changes are observed during the first year (2003 to 2004), 

but a negative and significant change is estimated for the second year (2004 to 2005), 

particularly under the KM2 specification with an annual rate close to – 2.0%. Note also that 

the γ coefficient is in all cases near 1.0 indicating that the share of the inefficiency term 

variance in the total composed error variance is near 100%. 

Summing up, the results presented in Table 2 illustrate the main features of electricity 

distribution activity in France over the period 2003 to 2005, as corresponding to the 92 EDF 

DSO analysed here.  Even if the role of quality appears to be rather small, and in some cases 

associated with statistically insignificant estimators, LLR tests performed on both models 

indicate that quality matters. Nevertheless, given that the value of LLR test for the model with 

KM2 gives a higher value, 97.0 (d.f.  = 6), than the model with NETW, 20.0 (d.f.  = 6), we 

retain this model results for presentation purposes in the following sections.      
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Table 2:  SFA Estimates 

Network length (NETW) Area served (KM2) 

without quality base without quality base Variables 

Coef. (t-ratio) Coef. (t-ratio) Coef. (t-ratio) Coef. (t-ratio) 

Intercept 0.120 (11.8) 0.118 (11.1) 0.312 (22.1) 0.340 (17.0) 

x1 (OPEX) 0.093 ( * ) 0.111 ( * ) 0.072 ( * ) 0.105 ( * ) 

x2 (CAP) 0.907 (59.5) 0.874 (53.8) 0.928 (46.3) 0.881 (45.6) 

x3 (NINT) - - 0.015 ( 2.6) - - 0.014 (2.1) 

x1x1 -0.150 ( * ) -0.188 ( * ) -0.182 ( * ) 0.150 ( * ) 

x2x2 -0.150 ( 2.6) -0.063 ( 1.0) -0.182 ( 2.9) -0.141 (2.1) 

x3x3 - - -0.018 ( 1.3) - - -0.010 (0.6) 

x1x2 0.150 ( * ) 0.116 ( * ) 0.182 ( * ) 0.184 ( * ) 

x1x3 - - 0.072 ( * ) - - 0.053 ( * ) 

x2x3 - - -0.053 ( 2.5) - - -0.043 ( 1.4) 

y1 (CUST) -0.452 (16.5) -0.463 (15.3) -0.707 (22.2) -0.667 (17.3) 

y2 (NETW,KM2) -0.400 (24.0) -0.393 (21.9) -0.192 (16.0) -0.200 (17.6) 

y3 (GWH) -0.064 ( 3.0) -0.054 ( 2.3) -0.054 ( 1.7) -0.069 ( 2.4) 

y1y1 -0.336 ( 1.8) -0.239 ( 1.2) 0.249 ( 1.0) 0.153 ( 0.7) 

y2y2 0.038 ( 0.7) 0.062 ( 1.0) -0.018 ( 1.2) -0.041 ( 2.8) 

y3y3 -0.095 ( 0.6) 0.082 ( 0.5) 0.403 ( 2.3) 0.281 ( 1.7) 

y1y2 0.180 ( 3.7) 0.143 ( 2.5) 0.106 ( 2.5) 0.034 ( 0.9) 

y1y3 0.178 ( 1.1) 0.035 ( 0.2) -0.419 ( 2.1) -0.294 ( 1.6) 

y2y3 -0.092 ( 2.2) -0.082 ( 1.8) -0.071 ( 2.4) -0.061 ( 2.7) 

x1y1 -0.080 ( * ) -0.188 ( * ) -0.142 ( * ) -0.130 ( * ) 

x1y2 0.028 ( * ) 0.049 ( * ) -0.020 ( * ) 0.007 ( * ) 

x1y3 0.047 ( * ) 0.119 ( * ) 0.088 ( * ) 0.079 ( * ) 

x2y1 0.080 ( 1.0) 0.237 ( 2.7) 0.142 ( 1.5) 0.180 ( 1.9) 

x2y2 -0.028 ( 1.1) -0.063 ( 2.3) 0.020 ( 1.6) -0.005 ( 0.4) 

x2y3 -0.047 ( 0.6) -0.177 ( 2.3) -0.088 ( 1.0) -0.133 ( 1.5) 

x3y1 - - -0.049 ( 1.8) - - -0.050 ( 1.4) 

x3y2 - - 0.015 ( 1.6) - - -0.001 ( 0.3) 

x3y3 - - 0.058 ( 2.4) - - 0.054 ( 1.8) 

d1 (year 2004) -0.001 ( 0.4) 0.004 ( 1.5) 0.006 ( 1.8) 0.005 ( 1.6) 

d2 (year 2005) 0.007 ( 2.4) 0.016 ( 4.3) 0.021 ( 5.2) 0.022 ( 4.9) 

σ 0.016 ( 2.7) 0.016 ( 2.6) 0.012 (10.4) 0.022 ( 8.7) 

γ 0.985 (168.4) 0.986 (171.6) 0.976 (416.8) 0.990 (427.6) 

µ 0.034 ( 0.6) 0.043 ( 0.8) 0.214 (10.1) 0.293 (14.4) 

LLF 564.3  574.3  470.3  518.8  

(*)  Parameter computed applying homogeneity conditions. 
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Technical efficiency: DEA vs. SFA 

The means and standard deviations of the TE scores from the SFA and DEA models (with and 

without quality) are listed in Table 3.  The SFA and DEA models have quite similar means.  

Furthermore, the exclusion of the quality variable does not have a significant effect upon 

mean TE.  This is not surprising given the small size of the quality elasticity in the SFA 

results in Table 2. Actually, the comparison should be done in terms of evolution of ranking 

between the models with and without quality, and not on a TE scores comparison. 

This suggests that the incorporation of quality into a benchmarking model is unlikely to have 

a substantial effect upon price regulation outcomes. However, our empirical results differ 

from those reported in Growitsch et al (2005) and Giannakis et al (2005).  Perhaps our results 

could be in part a consequence of the short period covered by the data and the relative 

uniformity of quality regimes across these 92 EDF distribution units?  In future work we plan 

to incorporate data from other operators in other countries to test this hypothesis. 

 
Table 3 

Technical efficiency scores 
 

DEA SFA 

 without 
quality 

base 
without 
quality 

base 

Descriptive   statistics 

mean 0.823 0.829 0.756 0.741 

std 0.123 0.125 0.101 0.099 

min 0.532 0.532 0.556 0.554 

max 1.000 1.000 0.994 0.989 

Correlation table 

DEA without quality 1.000 0.988 0.499 0.510 

 base 0.988 1.000 0.502 0.516 

SFA without quality 0.499 0.502 1.000 0.989 

 base 0.510 0.516 0.989 1.000 

 

Shadow shares and prices 

Nevertheless, we derive interesting conclusions from the study of input shadow prices and 

input shares obtained from the estimation of the model.  Input shadow prices reflect the 

potential trade-offs between inputs.  The slope of the shadow price line in Figure 1 (which is 

at a tangent to frontier at the point where the firm is operating) reflects these trade-offs.  
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When a frontier is estimated we can find the slope of this line for each firm.  If the price of 

one regular input is known then the shadow price of the NINT input can be calculated.  Some 

average shadow price estimates for NINT are listed in Table 4, which have been obtained 

using the OPEX input price (1 Euro).  These values are interpreted such that the mean value 

of 7.6 from the SFA model suggests that the marginal cost of reducing one interruption (on 

average) would be 7.6 Euros.  However, we note that the DEA estimate is 50% larger than 

this SFA estimate (10.6 Euros) and that the shadow price varies substantially across quintiles, 

indicating that the marginal cost is higher for those operators which already have low rates of 

interruptions by customer (SAIFI), as one would expect. This result is confirmed, mainly for 

the SFA model, when looking to average quality shadow prices by quintiles distinguished by 

customers’ density or by the share of network underground lines, two features that appear to 

be highly correlated with quality in electricity distribution among French DSO operators.   

In Table 4 average shadow shares by quintiles are also reported. They correspond to the SFA 

partial elasticities of the distance function with respect OPEX, CAP and NINT variables, 

respectively. It appears that distribution units performing lowest quality levels (Q5) are 

characterised by higher OPEX and lower CAPITAL shadow shares, while the opposite is 

verified for operators reaching higher quality standards (Q1). Nevertheless, these results do 

not allow us to conclude any correlation between the investment policy of a utility and the 

level of quality since they are inherently linked to the customer density (urban vs. rural) in the 

supplied area as it can be observed at the bottom of the same table.  

 

5. CONCLUSIONS 

In this study we explored the possibility to incorporate the quality of service in a 

benchmarking model using as illustration the French electricity distribution sector operated by 

near hundred DSO belonging to EDF. For this purpose, we estimate an input distance function 

applying two alternative frontier approaches: parametric SFA and non parametric DEA.  

The results, obtained in a multi-dimensional setting, are very close with both approaches and 

show that in the case under study the incorporation of quality does not have a significant 

effect upon technical efficiency scores.  

Nevertheless, in this analysis we find that the mean shadow price in term of OPEX of one 

interruption ranges from approximately eight to eleven Euros per year. In other words, 

electricity distribution operators face a trade-off between network investments and operational 
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expenditures, but they are deeply correlated to the inherent customer density factor. 

These results would be useful for regulation design purposes as they could be compared with 

the customers/society willingness to pay for the level of quality produced by each company.  

 
Table 4 

Shadow price estimates for quality and input shadow shares  
(by quintiles) 

Quality shadow price Input shadow shares (SFA) 
Quintiles 

SFA DEA OPEX CAP NINT 

SAIFI (number of interruptions per customer per year) 

Q1 [  < 0.80   ] 45.8 80.1 0.055 0.921 0.024 

Q2 [0.80-1.03] 16.1 16.1 0.1 0.880 0.020 

Q3 [1.03-1.33] 7.4 10.1 0.104 0.883 0.013 

Q4 [1.33-1.74] 4.6 4.5 0.123 0.866 0.011 

Q5 [   > 1.74  ] 0.9 0.1 0.138 0.858 0.003 

Density (customers per km2) 

Q1 [   > 7,250    ] 27.9 14.9 0.148 0.937 0.021 

Q2 [6,100-7,250] 11.9 8.8 0.132 0.894 0.018 

Q3 [5,100-6,100] 7.1 8.4 0.114 0.872 0.014 

Q4 [2,000-5,100] 5.4 12.9 0.88 0.855 0.013 

Q5 [   < 2,000   ] 1.9 5.3 0.043 0.847 0.005 

% of underground lines 

Q1 [   > 52.0  ] 33.6 10.6 0.043 0.935 0.023 

Q2 [37.4-52.0] 11.3 12.6 0.088 0.893 0.019 

Q3 [30.4-37.4] 5.7 6.9 0.117 0.872 0.011 

Q4 [23.3-30.4] 6.3 21.1 0.124 0.862 0.013 

Q5 [  < 23.3  ] 1.5 5.6 0.152 0.843 0.005 

All 7.6 10.6 0.105 0.881 0.014 
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