

Escuela Técnica Superior de Ingeniería Instituto de Investigación Tecnológica

Efficiency of reliability options and applicability in different market Ignacio Pérez-Arriaga & Carlos Batlle

LARSEN WORKSHOP

Capacity mechanisms for long term supply security in liberalised electricity markets

Campus de Fontenay-aux-Roses, University Paris XI

Paris, 16 March, 2007

Santa Cruz de Marcenado 26 - E 28015 Madrid - Tel: +34 91 542 28 00 - Fax: +34 91 542 31 76 - http://www.iit.upco.es

Outline

The nature of the problem & the terminology

- The reliability options approach
 - The original reliability options scheme
 - The proposed scheme in the Spanish White Paper
 - Implementation details in different market designs

The nature of the problem & the terminology (

- Diverse time scopes for consideration
 - Reliability: security + firmness + adequacy
 - Strategic energy policy
- Security: readiness of existing generation capacity to respond, when it is needed in operation, to meet the actual load (a short-term issue)
 - Security typically depends on the operating reserves that are prescribed by the ISO
- Firmness: short-term generation availability that partly result from operation planning activities of the already installed capacity (a short to mid-term issue)
 - Firmness depends on short & medium term management of generator maintenance, fuel supply contracts, reservoir management, start-up schedules, etc.

The nature of the problem & the terminology (

- Adequacy: existence of enough available capacity, both installed &/or expected, to meet demand (a long-term issue)
 - Is the market remuneration enough to promote the entry of generation technologies that are well adapted to the future evolution of the demand in the long term?
- Strategic energy policy: concern for the long-term available of energy resources: physical existence, price, energy dependence of the country, reliability of the internal & extern energy resources, potential environmental constraints, etc. (long to very long term issue)

Outline

- The nature of the problem & the terminology
 - The reliability options approach
 - The original reliability options scheme
 - The proposed scheme in the Spanish White Paper
 - Implementation details in different market designs

The original reliability options scheme (1)

Motivation

- Somebody (regulatory authority) acts on behalf of the demand specifies the desired generation adequacy level
- Consumers: Obtain a well defined commercial product in return their money
 - adequate installed capacity
 - plant availability at the time it is needed
 - a reasonable price cap whenever shortages may occur
- Generators: Stabilize the most volatile fraction of their revenues
- A market mechanism is used to determine
 - The **price** to be paid to the committed capacity
 - Each generator's committed capacity (how much capacity bid is each generator' decision)

The original reliability options scheme (2)

Implementation

- The market authority buys through an auction
 - to the generators
 - on behalf of the entire demand
 - some predefined *reliability product*, a combination of
 - a financial call option ...
 - It gives the **buyer** the **right**, but not the obligation, to buy the electricity at a certain predetermined strike price k, instea of the spot price S
 - The seller receives in exchange a premium fee c, the call price
 - ... plus a physical delivery obligation
 - The seller has to pay a penalty Π if s > k and he is not generating the committed amount of capacity

The original reliability options scheme (3)

- Procedure (i)
- The regulator determines:
 - The strike price k
 - Frontier between normal energy prices and emergency prices
 - High enough to activate only when the system is in trouble
 In general, above the operating costs of any generator
 - The penalty Π
 - The time horizon of the auction
 - The total amount of capacity to be bought
 - e.g. Peak demand + Reserve margin

The original reliability options scheme (4)

Procedure (ii)

- Generators submit bids
 - Price (minimum premium fee required) ...
 - ... and **quantity** (capacity committed)
- For a generator, selling a reliability contract means a reduction in his risk and a strong incentive to be available during critical periods
 - Since the premium fee results from an auction, any unit can ask the price it needs to get installed (or to stay in the system)
 - The duration of the contracts should be large enough to stabilize the income
 - The lag period facilitates the bidding process of new entrants
 - One or two years

The original reliability options scheme (5)

- Competition among existing energy blocks (generators) is determined by the degree of firmness (reliability) of each blo and...
- ... it is not influenced at all by their operating costs

The original reliability options scheme (6)

- Net income of each generator is related with its firmness
 - Equivalent to a capacity payment
 - This corresponds with some previous theoretical results

The original reliability options scheme (5)

Strong points

- Compared to the energy-only market
 - Additional incentive for new investments, since they stabilize a fraction of their income
 - Clear commitment for generators to be available when needed
 - Consumers are protected from high spot prices & their guarantee of supp improves (although they pay for it)
- Compared to the traditional capacity payments mechanism
 - All the previous advantages, & besides:
 - Generation capacity adequacy is guaranteed
 - No need for regulated determination of the value of firm capacity
 - · Capacity payments are determined by the market

The original reliability options scheme (6)

- **Potential weak points** (may require some positive regulatory action)
- The premium fee may not be enough to attract new entrants, since they would like a larger duration of their fixed payments
- Not easy to fine tune the commitment for generators to be available when needed
 - Gaming opportunities
- Potential market power abuse in the auctions
 - As in any market, but this case is more critical due to the longlasting effects
- All consumers are protected from very high spot prices
 - It does not promote an active demand response for s > k
- Capcity margin adopted by regulator & SO impacts on energy revenues for all generators

Outline

- The nature of the problem & the terminology
- The reliability options approach
 - The original reliability options scheme
 - The proposed scheme in the Spanish White Pape
 - Implementation details in different market designs

(i)

- Keep the present system of "capacity payments" with two major improvements
 - 1. The "capacity payment" now implies a commitment (it actually becomes a "reliability option")
 - To produce an output equal or greater than the committ capacity "when needed", i.e. when the spot market price exceeds a threshold (the "strike price")
 - and provide the power at this strike price
 - Otherwise there will be a strong penalty
 - The regulator assigns the value of the firm capacity, although the generator may ask for a lower value

(ii)

- (continuation)
- 1. A. Treatment for the presently existing units
 - No auction for existing units
 - Price is fixed administratively
 - Based on the former capacity payment plus the cost of the new obligation
 - Opportunity costs of the option (strike sets the maximum income)
 - Expected costs of the penalties to be paid due to unexpected failures
 - Quantity (committed capacity) defined by the regulator
 - Generators may ask for a lower value

(iii)

- (continuation)
- 1. B. Treatment for the new units
 - Auctions to determine the value of capacity payments of new entrants (for 5 years) only if the SO foresees margin below threshold
 - Every year the System Operator evaluates the expected reserve margin, looking three years ahead of time
 - The auction is open to new entrants & to new existing units (*le than 5 years old*) that have not yet won an auction
 - Required total capacity is defined by the regulator / SO, & participants decide the firm capacity they want to bid
 - **Price** (capacity payment) is determined by the auction

Instituto de Investigación Tecnológica

Escuela Técnica Superior de Ingeniería (ICAI)

Efficiency of volice/life options, 0, confidentiate in different regulations

Outline

- The nature of the problem & the terminology
- The reliability options approach
 - The original reliability options scheme
 - The proposed scheme in the Spanish White Paper
 - Implementation details in different market design

designs

- Specific for the scheme proposed in the Spanish White Paper
 - Prevent gaming by potential new entrants if they expect an auction to happen soon
- Shared with other schemes
 - Determination of "firm capacity" in the presence of hydro thermal & intermittent generation

designs

- (continuation)
- Specific of reliability options in different versions
 - The definition of the "strike price"
 - The role of the "penalty" for not providing the assigned firm capacity when required
 - Determination of the values of the strike price, the penalty, the total required volume of firm capacity, the time horizon & the time lag
 - Preventing that unavailability of the required firm capacity might be hidden via successive markets
 - Implicit or explicit selection of new investment technologies via the implementation details

designs

- (continuation)
 - Interaction with long-term contracts
 - Choice of lag period with multi-year repetitive natura phenomena
 - Lack of price signals to consumers above the strike price
 - Firmness of commitments by generators located in other countries
 - Safeguard rules to prevent reckless behavior by generators

auctions

- Ad hoc rules to prevent gaming with the date of the auctions
 - The generators already installed (and not older than five years old) that have not taken part in any previous auction
 - receive for the time being the standard capacity payment
- can take part in the auction, earning the marginal capacity price resulting from the auction until they are five years old

Escuela Técnica Superior de Ingeniería (ICAI)

The determination of firm capacity

- Strongly dependent on the system requirements ...
 - Demand behavior (seasonality, peaking)
 - Generating system characteristics
 - · Key factor: share (and characteristics) of the limited energy plants
 - Firm supply = firm capacity? firm energy? a mix of both?
 - Firm supply "units" = MW, MWh or MWh*
 - e.g. PJM, Brazil or Guatemala (h*=4 peak hours in the dry season)
 - ... & on the design of the regulated capacity scheme
 - May even distort the market behavior (Argentina, Colombia)
 - The higher the capacity incentive the larger the firm capacity tl generators will try to make available
 - Which is the firm capacity of a hydro plant?

The strike price

- Theoretical definition: regulatory frontier between "normal functioning" and "near rationing" conditions of the market
 - In principle, the strike price at least should equal the highest short-term marginal cost of any unit in the system
- On the generation side
 - What happens when the variable cost of a significant fraction of the installed capacity is well above the estimated (or desired) price level of rationing?
 - e.g. Peru, Guatemala
 - How to prevent free riding?
- On the demand side
 - If demand can opt-out, there is also a free riding proble
 - e.g. The Netherlands

The lag period and the duration

- The unavoidable market intervention: implicit selection of technologies by the adopted implementation scheme
 - Observed undesirable results of implicit incentives
 - Peru and the former capacity payments
 - Regulatory uncertainty reduced the incentive to "efficient" ent
 - Just "ultra expensive" peaking units (minimum investment cos
 - PJM Reliability Pricing Model and Spain and average valuations
 - Lack of peaking units
 - Quasi-explicit technology selection via product definition
 - Brazil and the energy call options auctions
 - Fifteen year duration contracts
 - Long-term planning model to solve the auction (considering handicaps)
 - Guatemala and the regulated competitive bidding

- Aimed at base-load generators (strike price defined according

Lack of price signals to consumers

- Demand
 - Mechanisms could be implemented to provide economic signals to demand during high-price periods
 - The total volume of call options *P* that the OS buys is broken dow into pieces *Pi* that are assigned to every consumer/retailer *i*
 - This is a minimum quantity (consumer may ask for more)
 - Whenever the spot price s > k, the consumer
 - pays a penalty Π for its consumption above Pi
 - receives a bonus Π if its consumption is under *Pi*
 - It is more difficult to implement as it requires individualized loa predictions for each consumer/retailer

systems

- Transmission
 - The penalty Π also applies if the committed generation does not have the required firm transmission rights to make its generation available when s > k...
 - ... but transmission availability is the responsibility of the ISO
 - For external generators
 - The same requirement of provision of firm transmission rights
- Safeguard against foreign regulations
 - Committed foreign generation capacity should not be recalled to serve its national demand under emergency conditions
 - Need to harmonize European regulations
 - Meanwhile, place the burden on the foreign generator and make sure that the penalty Π can be applied

Safeguard rules to prevent excessive risks

- Safeguard rules
 - A number of safeguard rules can be implemented to avoid generators from taking excessive risks
 - Some of them are:
 - No portfolio bidding
 - No bids above nominal capacity are accepted from a generator
 - No secondary trading is allowed for the physical delivery obligation
 - Financial guarantees
 - Depending on a certain measure of risk exposure (for each generator) calculated by the regulator

Escuela Técnica Superior de Ingeniería Instituto de Investigación Tecnológica

Efficiency of reliability options and applicability in different market Ignacio Pérez-Arriaga and Carlos Batlle

LARSEN WORKSHOP

Capacity mechanisms for long term supply security in liberalised electricity markets

Campus de Fontenay-aux-Roses, University Paris XI

16 March , 2007

Santa Cruz de Marcenado 26 - E 28015 Madrid - Tel: +34 91 542 28 00 - Fax: +34 91 542 31 76 - http://www.iit.upco.es

