Cooperation among LNG exporters: Is rationalization the sole objective?

Olivier MASSOL Stéphane TCHUNG-MING

Energy

Environment

Outline of talk

I - Some stylized facts on the LNG industry

- The GECF: content, objectives
- Some views on the GECF
- Research question

II - Analysis

- Modeling the gains derived from a *logistic cooperation*
 - Model formulation
 - Some results
- A gain sharing approach
 - Can we find a "fair" gain sharing method?
- A possibly costly coordination: what consequences?

Some stylized facts

The GECF

Tehran – 2001: The Gas Exporting Countries Forum (GECF)

- An informal and rather chaotic organization
 - unstable membership and mandate
 - However, a Liaison Office has recently been established in Qatar
- A potentially powerful organization
 - 79% of world reserves, 56% of world production, 63% of exports (BP, 2008)
 - Seven of these countries are also members of the OPEC

=> Question: Are we facing an infant GASPEC?

The GECF in the literature

- Mainly policy-oriented papers
 - Soligo and Jaffe (2004), Hallouche (2006), Wagbara (2007), Finon (2007)...
 - ⇒ An institutional description
 - ⇒ A geopolitical discussion on possible cooperation strategies
- Some recent analytical papers
 - Egging et al. (2009): first large scale model (an MCP formulation)

Some conventional wisdoms

• A group of gas or LNG exporters?

- Yergin and Stoppard (2003)
 - "An association of some kind among LNG exporters is likely."
- J. Stern, CESSA Conference, Cambridge, Dec. 14, 2007
 - "Prime movers are LNG exporters (...) therefore an organization for LNG exporters is more likely than gas exporters"

An inoffensive organization?

- J. Stern, CESSA Conference, Cambridge, Dec. 14, 2007
 - A gas "price setting" organization/cartel is not an immediate concern
- **C. de Margerie (CEO of Total)**, *Interview to Times, Feb. 2007*
 - "The cartel of world gas exporters is capable to play a positive role (...). A gas OPEC would help to avoid inefficient investments, that works in interests of the consumers."
- Mr. Mandil (former Director of the International Energy Agency), Oct. 2008
 - "a think tank for gas exporting countries, enabling them to consider the best possible conditions for the exercise of their mission"

Possible research questions

Question:

What is the underlying economic goal?

Case 1: a cartel that seeks some market power?

• Cf. Egging et al. (2009)

Case 2: an inoffensive cooperation of LNG exporters?
QUESTION: IS IT REALISTIC?

The LNG Chain in 2007

	Upstream	Liquefaction	Shipping	Re-gas
Total annual cost (\$ billion)	3.588	7.234	8.167	3.617
%	16.6%	33.4%	33.3%	16.7%

Shipping:

- Shipping cost is distance dependent
- Observed trade flows are obviously suboptimal
 - Because of bilateral contracts

Research objectives

Questions

- 1 How huge would be the collective profit gain derived from a shipping optimization?
- 2 Will all GECF countries have an incentive to cooperate?
 - If YES, STOP.
 - If NO:
 - Can we find an adequate rule to share the collective profit gain?
 - Can that rule be preferred to "asset swaps" organized outside the GECF?

Suppose now that export coordination is costly,

3 – What is the maximum admissible cost of cooperation?

PROPOSE QUANTITATIVE INSIGHTS IN TERMS OF UNDERSTANDING THE GECF

Cooperation in LNG trade

A simple LP model

• Suppose that *n* = 12 non-OECD LNG exporters decide to cooperate

Exporter's *i* profit as a function of the annual flows q_{ij} :

$$\pi_i\left(q_i\right) = \sum_{j=1}^d \left(P_j - C_i - T_{ij}\right) q_{ij}$$

• The GECF objective:

A familiar transportation problem (Dantzig, 1951)

$$\begin{array}{ll} \underset{q_{ij}}{\textit{Max}} & \sum_{i=1}^{n} \pi_i \left(q_i \right) & \text{Unchanged utilization} \\ \text{s.t.} & \sum_{j=1}^{d} q_{ij} = \sum_{j=1}^{d} Q_{ij} & (i = 1, 2, ..., n) & (1) \\ & \sum_{i=1}^{n} q_{ij} = \sum_{i=1}^{n} Q_{ij} & (j = 1, 2, ..., d) & (2) & \text{Unchanged import} \\ & q_{ij} \geq 0 & \text{The volume of LNG shipped} \\ & \text{from } i \text{ to } j \text{ during the year} & \text{Unchanged utilization} \\ \end{array}$$

Observed LNG flows in 2007

First Result

=> RESULT #1: a collectively attractive cooperation

- An overall collective gain: +M\$ 968 for the 12 countries in 2007
 - an 11.9% reduction in the GECF's shipping cost
 - a +2.8% rise in 2007 profits

However....

Cooperation in the LNG industry

A TU-game (N,v)

- **N** a finite set of *n* exporters involved in the GECF
- $S \subseteq N$ a subcoalition of exporters (2¹² = 4096 coalitions)
- |S| the number of countries in **S**
- *j* one of these importers

The characteristic function

V

measures, for any coalition S, the logistic gain that could obtained thanks to a cooperation

$$\begin{array}{ll} : 2^{N} \rightarrow \mathbf{R} \\ S \mapsto v(S) = Max_{q_{ij}} & \sum_{i=1}^{n} \delta_{i} (S) \cdot \left(\pi_{i} \left(q_{i}\right) - \pi_{i} \left(Q_{i}\right)\right) \\ \text{s.t.} & \sum_{j=1}^{d} q_{ij} = \sum_{j=1}^{d} Q_{ij} & (i = 1, 2, ..., n) \\ & \sum_{i=1}^{n} q_{ij} = \sum_{i=1}^{n} Q_{ij} & (j = 1, 2, ..., d) \\ & \left(1 - \delta_{i} (S)\right) q_{ij} = Q_{ij} & \left((i, j) \in \{1, 2, ..., n\} \times \{1, 2, ..., s\}\right) \\ & q_{ij} \ge 0 \end{array}$$

Some natural requirements

- An « acceptable » gain allocation rule $x = (x_i)_{i \in N}$ satisfies:
 - Efficiency $\sum_{i=1}^{n} x_i = v(N)$

■ Individual rationality: for each i $x_i \ge v(\{i\})$

Thus,

x must belong to the CORE of the game!

From basic sharing rules...

- There exists a multitude of possible sharing rules
 - Trivial examples include
 - Equal shares
 - 1/12 for each country
 - Proportional to profit earned in 2007
 - Profits variations: +2.78 % for each exporter
 - Proportional to total quantity shipped in 2007
 - A method inspired by cost sharing methods (Ransmeier, 1932)
 - Each country *i* receives
 - its marginal value contribution : $m_i = v(N) v(N \setminus \{i\})$
 - corrected so as to recover exactly v(N)

$$x_{i} = m_{i} - \left(\sum_{i=1}^{n} m_{i} - v(N)\right) \frac{m_{i} - v(\{i\})}{\sum_{p=1}^{n} (m_{p} - v(\{p\}))}, \quad \forall \{i\} \in N$$

... to more advanced sharing rules

Shapley Value

- Nucleolus-inspired methods
 - <u>The Nucleolus</u> (Schmeidler, 1969)
 - The "*unhappiness* of coalition **S** with the proposed allocation is:

$$e(S, x) = v(S) - \sum_{\{i\} \in S} x_i$$

- The nucleolus is the imputation that maximizes (lexicographically) the satisfaction obtained by the least well-off coalition.
- **The Per Capita Nucleolus (Grotte, 1970)**
- The Disruption Nucleolus (Gately, 1974; Littlechild & Vaidya, 1976)

Results

© IFP

19

But are they in the CORE?

=> RESULT #2: Selecting an allocation within the core is not so easy

- Only 3 nucleolus-inspired methods satisfy this minimal requirement
 - No individual earns less than in a stand alone case
 - No coalition of exporters earn less than in a stand alone asset swap

Another Desirable Requirement

Monotonicity in the aggregate

- After participants commit to an allocation, then
 - No participant would receive more if the profit were to decrease
 - No participant would receive less if the profit were to increase
- A "fair" requirement...

=> RESULT #3: Core & Monotonicity => a restricted choice

Only one method remains: the per capita nucleolus

THUS, INDENTIFYING AN ADMISSIBLE SHARING METHOD IS NOT SO SIMPLE!

Cooperation in the LNG industry

Coordination Cost

- Now, let's assume that all the 12 countries agree to use the per capita nucleolus as a profit sharing scheme.
- Suppose that a coordination cost is needed
 - e.g. to cover the cost of a General Secretariat
- QUESTION:

What is the maximum sustainable coordination cost for such a cooperation ?

- Thanks to this framework, we are able to compute the maximum « allowable » cost of coordination.
 - those compatible with a non-empty core

Answer: \$720,000

Above that figure, the « market power free » cooperation can no longer be sustained

© FP

Cooperation in the LNG industry

Summary

- 1. A « market power free » coordination could provide a collective profit gain.
- 2. But countries will not spontaneously cooperate => a profit sharing rule is needed
- 3. Sharing these gains requires advanced cooperative game theory concepts

Not easy to negotiate...

- 3. The incentive to cooperate might not be so strong
- 4. Especially if the coordination costs are reasonable but significant

MAIN CONCLUSION:

IS THE "NO MARKET POWER" HYPOTHESIS

REALLY CREDIBLE?

References

- Dantzig, G. B. 1951. Application of the simplex method to a transportation problem. In Koopmans, T. C. (ed.), Activity Analysis of Production and Allocation, John Wiley& Sons:NY; 1951. 359-373.
- Egging R., Gabriel S.A., Holz F., Zhuang J., 2008. A complementarity model for the European natural gas market. Energy Policy 36(7), 2385-2414.
- Finon D., 2007. Russia and the "Gas-OPEC". Real or Perceived Threat? IFRI Russia/NIS Center, Paris.
- Gately D., 1974. Sharing the games from regional cooperation: a game theoretic application to planning investment in electric power. International Economic Review 15, 195-208.
- Jaffe A.M., Soligo R. 2006. Market Structure in the New Gas Economy: Is Cartelization Possible? In Victor, D.G., Jaffe, A.M., Hayes, M. H. (Eds), Natural Gas and Geopolitics: From 1970 to 2040, chapter 11, Cambridge; 2006.
- Littlechild S.C., Vaidya K.G., 1976. The propensity to disrupt and the disruption nucleolus of a characteristic function game. International Journal of Game Theory 5, pp. 151–161.
- Schmeidler D., 1969. The nucleolus of a characteristic function game. SIAM Journal on applied mathematics 17, 1163-1170.
- Shapley, L.S., 1953. A Value for n-Person Games. In Kuhn, H.W. and Tucker, A.W. (eds.) Contributions to the Theory of Games, n. II, Annals of Math. Studies, 28. Princeton University Press; 1953. pp. 307-317.
- Wagbara O.N., 2007. How would the gas exporting countries forum influence gas trade? Energy Policy 35(2), 1224-1237.
- Yergin D., Stoppard M., 2003. The next prize. Foreign Affairs 82(6), 103-114.
- Young H.P., Okada N., Hashimoto T., 1980. Cost Allocation in Water Resources Development. A Case Study of Sweden. IIASA Research report, Laxenburg.

LNG in 2007

- LNG growth is 5 times higher than gas consumption growth
- Fundamental changes reshape the LNG scene
 - More importing countries (China, India, South America etc...)
 - More LNG sold in liquid gas markets
 - More "flexible LNG"

Some cost hypothesis

Production & Liquefaction costs:

	Extraction Cost \$/MMBTU	Liquefaction Cost \$/MMBTU	L _i \$/MMBTU
Trinidad & Tobago	0,60	1,00	1,60
Oman	0,40	1,00	1,40
Qatar	0,30	1,00	1,30
UAE	0,35	1,00	1,35
Algeria	0,45	1,00	1,45
Egypt	0,60	1,00	1,60
Equatoral Guinea	0,50	1,00	1,50
Libya	0,50	1,00	1,50
Nigeria	0,50	1,00	1,50
Brunei	0,40	1,00	1,40
Indonesia	0,25	1,00	1,25
Malaysia	1,00	1,00	2,00

Regas cost: 0.50 \$/MMBTU

- **FLOOD (1954):** *T_{ij}* unit transmission cost between *i* and *j*
 - Standard LNG carriers
 - Capacity, speed, un/loading time...

LNG Supply Economics Insights from a merit-order

There are important cost differences!

A combination of

- geological endowment (Extraction costs differences)
- Localization of liquefaction and reception plants

The LNG Value Chain

		Billion USD	%
E&P cost	Production	3.588	16.6%
LNG cost	Plant	7.234	33.4%
	Shipping	8.167	33.3%
	Re-gas	3.617	16.7%
Total cost		21.638	100.0%
Rent		34.870	
TOTAL revenue		57.476	

Some observations on the gain

• *v* is superadditive

2 coalitions **A**, **B**, $A \cap B = \emptyset$ $v(A \cup B) \ge v(A) + v(B)$

=> It always pays to enlarge the size of the cooperation

Some observations on the gain

The Marginal value scheme is not efficient

$m_i = v(N) - v(N \setminus \{i\})$

Marginal contribution of each GECF country (k\$)

	marginal contribution of i	
Trinidad & Tobago	123.695	
Oman	20.253	
Qatar	459.779	
UAE	8.386	
Algeria	205.191	
Egypt	245.722	
Equatoral Guinea	6.663	
Libya	2.149	
Nigeria	134.774	
Brunei	0.721	
Indonesia	30.113	
Malaysia	34.99	
TOTAL	1272.43	

=> There are significant differences among countries

